- S &=& S_G[U] + S_H[U,\phi] \label{latac} \\ \nonumber \\
- S_G &=& -\beta \sum_{x,\nu < \rho} \Re{\left(U_{\nu\rho}(x)\right)}, \quad \beta=\frac{1}{2e^2} \nonumber \\ \nonumber \\
- S_H &=& \sum_x \left[- \frac{1}{2} \sum_{\mu=1}^4 \left( \phi(x)^* U_\mu(x) \phi(x+\hat{\mu}) + \phi(x)^* U_\mu(x-\hat{\mu})^*\phi(x-\hat{\mu})\right) \right . \nonumber \\
- && \quad\quad\;\, + \left . \kappa \phi(x)^*\phi(x) + \lambda\left(\phi(x)^*\phi(x)\right)^2 \right], \quad \kappa = \frac{m^2+8}{2} \nonumber \quad . \nonumber
- \end{eqnarray}
-
-% \begin{wrapfigure}{r}{0.5\textwidth}
-% \begin{center}
-% \includegraphics[width=0.49\columnwidth]{sine}
-% \end{center}
-% \caption{This is the sine function.}\label{fig1}
-% \end{wrapfigure}
-
-\vspace{-24pt}
+ Z \; \propto \; e^{\phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}}}
+ \; = \; \sum_{k_{x,\mu}} \frac{1}{ (k_{x,\mu})!} \;
+ \bigg[ \, \phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}} \bigg]^{\, k_{x,\mu}} \quad .
+ \nonumber
+ \end{eqnarray}
+
+ Performing the summation over $\phi^i$ our partition sum no longer depends on the fields $\phi^i$
+ \begin{eqnarray*}
+ Z \; = \; \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)-S_H(U,\phi)} &=& \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)} \sum_{\{k,l\}} F(U,\phi,k,l) \\
+ &=& \sum_{\{k,l\}} \sum_{\{U\}} \; e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\textnormal{perform this summation}} \quad .
+ \end{eqnarray*}
+
+ {\textcolor{cyan}{\Large\sf Finally}}
+ we end up with a real and positive partition sum plus constraints for the dual degrees of freedom
+ \begin{eqnarray*}
+ Z \; = \; \sum_{\{k,l\}} \sum_{\{p\}} FB(k,l,p) = \hspace{-0.5cm} \sum_{\{p, k^1, l^1, k^2, l^2\}} \hspace{-0.5cm} {\cal W}(p,k,l) \, {\cal C}_B(p,k^1,k^2) \, {\cal C}_F(k^i) \quad .
+ \end{eqnarray*}
+
+ \vspace{0.2cm}
+
+ %\begin{center}
+ %\includegraphics[height=13cm]{dofs.pdf}
+ %\end{center}
+
+ \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
+
+%%%%%%%%%%%%%%%%%%%%%%% PHASE DIAGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Phase diagram}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+ \begin{center}
+ \includegraphics[height=25cm]{phasediagram.pdf}
+ \cite{PhysRevLett.111.141601}
+ \end{center}
+
+ \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
+%%%%%%%%%%%%%%%%%%%%%%% MASS CORRELATORS %%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Mass correlators in the confined phase}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+ For the fundamental correlators $F_1$ and $F_2$, as expected, we see no plateaus. The masses of the bound states $U_1$ and $U_2$ are split because we set the effective masses of the two flavours to different values.
+
+ \begin{center}
+ \includegraphics[height=28cm]{mass.pdf}
+ \end{center}
+
+ \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
+%%%%%%%%%%%%%%%%%%%%%%% CONDENSATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Condensation}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+ We here show different observables as function of $\mu$. The dotted lines show the masses $U_1$ and $U_1$ determined from the plots above.
+
+ \begin{center}
+ \includegraphics[height=35cm]{finmu_840.pdf}
+ \end{center}
+
+ \vspace{-24pt}