X-Git-Url: http://git.treefish.org/~alex/phys/poster_lattice14.git/blobdiff_plain/ee43357c6717f9f8d72e1b3c2b458d433ed41794..3403e07afc0570fbef35e91a7c54afc7326e1970:/poster_lattice14.tex?ds=inline diff --git a/poster_lattice14.tex b/poster_lattice14.tex index 8b5823f..837ca9e 100644 --- a/poster_lattice14.tex +++ b/poster_lattice14.tex @@ -222,7 +222,7 @@ \begin{minipage}[b]{350mm} {\textcolor{cyan}{\Large\sf The basic idea}} - is to expand the partition sum and perform the summation over the original degrees of freedom. + is to expand the partition sum and perform the integral over the original degrees of freedom. \vspace{0.5cm} @@ -232,20 +232,19 @@ Z \; \propto \; e^{\phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}}} \; = \; \sum_{k_{x,\mu}} \frac{1}{ (k_{x,\mu})!} \; \bigg[ \, \phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}} \bigg]^{\, k_{x,\mu}} \quad . - \nonumber \end{eqnarray} - Performing the summation over $\phi^i$ our partition sum no longer depends on the fields $\phi^i$ - \begin{eqnarray*} + Performing the integral over $\phi^i$ our partition sum no longer depends on the fields $\phi^i$ + \begin{eqnarray} Z \; = \; \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)-S_H(U,\phi)} &=& \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)} \sum_{\{k,l\}} F(U,\phi,k,l) \\ - &=& \sum_{\{k,l\}} \sum_{\{U\}} \; e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\textnormal{perform this summation}} \quad . - \end{eqnarray*} + &=& \sum_{\{k,l\}} \sum_{\{U\}} \; e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\textnormal{perform this integral}} \nonumber \quad . + \end{eqnarray} {\textcolor{cyan}{\Large\sf Finally}} we end up with a real and positive partition sum plus constraints for the dual degrees of freedom - \begin{eqnarray*} + \begin{eqnarray} Z \; = \; \sum_{\{k,l\}} \sum_{\{p\}} FB(k,l,p) = \hspace{-0.5cm} \sum_{\{p, k^1, l^1, k^2, l^2\}} \hspace{-0.5cm} {\cal W}(p,k,l) \, {\cal C}_B(p,k^1,k^2) \, {\cal C}_F(k^i) \quad . - \end{eqnarray*} + \end{eqnarray} \vspace{0.2cm} @@ -305,8 +304,7 @@ \begin{minipage}[b]{350mm} - We here show different observables as function of $\mu$. The dotted lines show the masses $U_1$ and $U_1$ determined from the plots above. - + We here show different observables as function of $\mu=\mu_1=\mu_2$. The dotted lines show the masses $U_1$ and $U_2$ determined from the plots above. For the observables $\langle\phi^*\phi\rangle$ and $\langle n \rangle$ red symbols belong to flavor 1 and green symbols to flavor 2. \begin{center} \includegraphics[height=35.8cm]{finmu_840.pdf} \end{center}