]> git.treefish.org Git - shutbox.git/blobdiff - src/qtable.py
refactoring
[shutbox.git] / src / qtable.py
index 0804187c15694b0774f4f93daff23672c3f14467..29a3081235bfa8675657cdc6d0b866158ee88f7a 100755 (executable)
@@ -6,7 +6,7 @@ import sys
 
 from game import Game
 
 
 from game import Game
 
-learning_rate = 0.1
+learning_rate = 0.001
 discount_factor = 1.0
 
 states_dim = 36864 # 2^10 * 6^2
 discount_factor = 1.0
 
 states_dim = 36864 # 2^10 * 6^2
@@ -34,14 +34,12 @@ def select_option(opts, qs):
         opt_qid = find_option_qid(opt)
         opt_qid_pairs.append( [opt, opt_qid] )
         opt_qsum += qs[opt_qid]
         opt_qid = find_option_qid(opt)
         opt_qid_pairs.append( [opt, opt_qid] )
         opt_qsum += qs[opt_qid]
-    #random.shuffle(opt_qid_pairs)
     ran_pt = random.uniform(0.0, opt_qsum)
     decision_pt = 0.0
     for opt_qid_pair in opt_qid_pairs:
         decision_pt += qs[ opt_qid_pair[1] ]
         if ran_pt <= decision_pt:
             return (opt_qid_pair[0], opt_qid_pair[1])
     ran_pt = random.uniform(0.0, opt_qsum)
     decision_pt = 0.0
     for opt_qid_pair in opt_qid_pairs:
         decision_pt += qs[ opt_qid_pair[1] ]
         if ran_pt <= decision_pt:
             return (opt_qid_pair[0], opt_qid_pair[1])
-    return (None, None)
 
 Q = np.ones([states_dim, actions_dim])
 
 
 Q = np.ones([states_dim, actions_dim])
 
@@ -52,19 +50,20 @@ for i in range(num_episodes):
     g.dice()
     state_qid = find_state_qid(g.get_shutable(), g.get_diced())
     while not g.is_over():
     g.dice()
     state_qid = find_state_qid(g.get_shutable(), g.get_diced())
     while not g.is_over():
-        opt, opt_qid = select_option( g.get_options(), Q[state_qid, :] )
-        if opt:
+        options = g.get_options()
+        if len(options) > 0:
+            opt, opt_qid = select_option( options, Q[state_qid, :] )
             old_score = g.get_score()
             g.shut(opt)
             g.dice()
             old_score = g.get_score()
             g.shut(opt)
             g.dice()
-            reward = (g.get_score() - old_score) / 11.0
+            reward = g.get_score() - old_score
             new_state_qid = find_state_qid(g.get_shutable(), g.get_diced())
             Q[state_qid, opt_qid] += \
                 learning_rate * (reward
                                  + discount_factor * np.max(Q[new_state_qid, :])
                                  - Q[state_qid, opt_qid])
             state_qid = new_state_qid
             new_state_qid = find_state_qid(g.get_shutable(), g.get_diced())
             Q[state_qid, opt_qid] += \
                 learning_rate * (reward
                                  + discount_factor * np.max(Q[new_state_qid, :])
                                  - Q[state_qid, opt_qid])
             state_qid = new_state_qid
-    Q[state_qid, opt_qid] = 0
+    Q[state_qid, :] = 0.0
     running_score[0] *= 0.99999999
     running_score[0] += g.get_score()
     running_score[1] *= 0.99999999
     running_score[0] *= 0.99999999
     running_score[0] += g.get_score()
     running_score[1] *= 0.99999999