X-Git-Url: http://git.treefish.org/~alex/shutbox.git/blobdiff_plain/04e37b160175309b4b21ca27b593ef4434ae1105..9e3585ba3617d2af399e6a18bfd45b046f7c5e1e:/src/qtable.py diff --git a/src/qtable.py b/src/qtable.py index fb1f390..5bb1c51 100755 --- a/src/qtable.py +++ b/src/qtable.py @@ -6,22 +6,25 @@ import sys from game import Game -states_dim = 147456 # 2^12 * 6^2 -actions_dim = 637 # 12+1 * (6+1)^2 -num_episodes = 10000000 +learning_rate = 1.0 +discount_factor = 1.0 + +states_dim = 36864 # 2^10 * 6^2 +actions_dim = 539 # 10+1 * (6+1)^2 +num_episodes = 10000000000 def find_state_qid(shutable, diced): qid = 0 for rod in shutable: qid += pow(2, rod-1) for i in range(len(diced)): - qid += (diced[i]-1) * pow(6, i) * pow(2, 12) + qid += (diced[i]-1) * pow(6, i) * pow(2, 10) return qid def find_option_qid(option): qid = 0 for i in range(len(option)): - qid += option[i] * pow(7, i) * pow(13, len(option)-1) + qid += option[i] * pow(7, i) * pow(11, len(option)-1) return qid def select_option(opts, qs): @@ -31,7 +34,6 @@ def select_option(opts, qs): opt_qid = find_option_qid(opt) opt_qid_pairs.append( [opt, opt_qid] ) opt_qsum += qs[opt_qid] - random.shuffle(opt_qid_pairs) ran_pt = random.uniform(0.0, opt_qsum) decision_pt = 0.0 for opt_qid_pair in opt_qid_pairs: @@ -40,7 +42,7 @@ def select_option(opts, qs): return (opt_qid_pair[0], opt_qid_pair[1]) return (None, None) -Q = np.zeros([states_dim, actions_dim]) +Q = np.ones([states_dim, actions_dim]) running_score = [0.0, 0.0] @@ -54,15 +56,16 @@ for i in range(num_episodes): old_score = g.get_score() g.shut(opt) g.dice() - reward = g.get_score() - old_score + reward = (g.get_score() - old_score) / 11.0 new_state_qid = find_state_qid(g.get_shutable(), g.get_diced()) - lr = 0.1 - gamma = 0.99 - Q[state_qid, opt_qid] = Q[state_qid, opt_qid] + \ - lr * (reward + gamma * np.max(Q[new_state_qid, :]) - Q[state_qid, opt_qid]) + Q[state_qid, opt_qid] += \ + learning_rate * (reward + + discount_factor * np.max(Q[new_state_qid, :]) + - Q[state_qid, opt_qid]) state_qid = new_state_qid - running_score[0] *= 0.999 + Q[state_qid, :] = 0 + running_score[0] *= 0.99999999 running_score[0] += g.get_score() - running_score[1] *= 0.999 + running_score[1] *= 0.99999999 running_score[1] += 1.0 print( "%d: %f" % (i, running_score[0]/running_score[1]) )