X-Git-Url: http://git.treefish.org/~alex/shutbox.git/blobdiff_plain/86ceab763d09764aa693f896271eaefaf38dd9a9..f3518c9f8f23a3df8eea91b3d4f23b8685123392:/src/qtable.py?ds=inline diff --git a/src/qtable.py b/src/qtable.py index 0ea19ec..0804187 100755 --- a/src/qtable.py +++ b/src/qtable.py @@ -6,22 +6,25 @@ import sys from game import Game -states_dim = 147456 # 2^12 * 6^2 -actions_dim = 637 # 12+1 * (6+1)^2 -num_episodes = 1000 +learning_rate = 0.1 +discount_factor = 1.0 + +states_dim = 36864 # 2^10 * 6^2 +actions_dim = 539 # 10+1 * (6+1)^2 +num_episodes = 10000000000 def find_state_qid(shutable, diced): qid = 0 for rod in shutable: qid += pow(2, rod-1) for i in range(len(diced)): - qid += (diced[i]-1) * pow(6, i) * pow(2, 12) + qid += (diced[i]-1) * pow(6, i) * pow(2, 10) return qid def find_option_qid(option): qid = 0 for i in range(len(option)): - qid += option[i] * pow(7, i) * pow(13, len(option)-1) + qid += option[i] * pow(7, i) * pow(11, len(option)-1) return qid def select_option(opts, qs): @@ -31,7 +34,7 @@ def select_option(opts, qs): opt_qid = find_option_qid(opt) opt_qid_pairs.append( [opt, opt_qid] ) opt_qsum += qs[opt_qid] - random.shuffle(opt_qid_pairs) + #random.shuffle(opt_qid_pairs) ran_pt = random.uniform(0.0, opt_qsum) decision_pt = 0.0 for opt_qid_pair in opt_qid_pairs: @@ -40,14 +43,30 @@ def select_option(opts, qs): return (opt_qid_pair[0], opt_qid_pair[1]) return (None, None) -Q = np.zeros([states_dim, actions_dim]) +Q = np.ones([states_dim, actions_dim]) + +running_score = [0.0, 0.0] for i in range(num_episodes): g = Game() + g.dice() + state_qid = find_state_qid(g.get_shutable(), g.get_diced()) while not g.is_over(): - g.dice() - state_qid = find_state_qid(g.get_shutable(), g.get_diced()) opt, opt_qid = select_option( g.get_options(), Q[state_qid, :] ) if opt: + old_score = g.get_score() g.shut(opt) - print( "%d: %d" % (i, g.get_score()) ) + g.dice() + reward = (g.get_score() - old_score) / 11.0 + new_state_qid = find_state_qid(g.get_shutable(), g.get_diced()) + Q[state_qid, opt_qid] += \ + learning_rate * (reward + + discount_factor * np.max(Q[new_state_qid, :]) + - Q[state_qid, opt_qid]) + state_qid = new_state_qid + Q[state_qid, opt_qid] = 0 + running_score[0] *= 0.99999999 + running_score[0] += g.get_score() + running_score[1] *= 0.99999999 + running_score[1] += 1.0 + print( "%d: %f" % (i, running_score[0]/running_score[1]) )