X-Git-Url: http://git.treefish.org/~alex/shutbox.git/blobdiff_plain/8fe5c4eee79c73b0409d4e305e18b51b790e028c..53107cd2371c49d4de4b41b61151f440f1b92a79:/src/qtable.py diff --git a/src/qtable.py b/src/qtable.py index 5dda444..29a3081 100755 --- a/src/qtable.py +++ b/src/qtable.py @@ -6,11 +6,11 @@ import sys from game import Game -learning_rate = 0.1 +learning_rate = 0.001 discount_factor = 1.0 -states_dim = 147456 # 2^12 * 6^2 -actions_dim = 637 # 12+1 * (6+1)^2 +states_dim = 36864 # 2^10 * 6^2 +actions_dim = 539 # 10+1 * (6+1)^2 num_episodes = 10000000000 def find_state_qid(shutable, diced): @@ -18,13 +18,13 @@ def find_state_qid(shutable, diced): for rod in shutable: qid += pow(2, rod-1) for i in range(len(diced)): - qid += (diced[i]-1) * pow(6, i) * pow(2, 12) + qid += (diced[i]-1) * pow(6, i) * pow(2, 10) return qid def find_option_qid(option): qid = 0 for i in range(len(option)): - qid += option[i] * pow(7, i) * pow(13, len(option)-1) + qid += option[i] * pow(7, i) * pow(11, len(option)-1) return qid def select_option(opts, qs): @@ -34,14 +34,12 @@ def select_option(opts, qs): opt_qid = find_option_qid(opt) opt_qid_pairs.append( [opt, opt_qid] ) opt_qsum += qs[opt_qid] - random.shuffle(opt_qid_pairs) ran_pt = random.uniform(0.0, opt_qsum) decision_pt = 0.0 for opt_qid_pair in opt_qid_pairs: decision_pt += qs[ opt_qid_pair[1] ] if ran_pt <= decision_pt: return (opt_qid_pair[0], opt_qid_pair[1]) - return (None, None) Q = np.ones([states_dim, actions_dim]) @@ -52,20 +50,20 @@ for i in range(num_episodes): g.dice() state_qid = find_state_qid(g.get_shutable(), g.get_diced()) while not g.is_over(): - opt, opt_qid = select_option( g.get_options(), Q[state_qid, :] ) - if opt: + options = g.get_options() + if len(options) > 0: + opt, opt_qid = select_option( options, Q[state_qid, :] ) old_score = g.get_score() g.shut(opt) g.dice() - reward = (g.get_score() - old_score) / 12.0 + reward = g.get_score() - old_score new_state_qid = find_state_qid(g.get_shutable(), g.get_diced()) Q[state_qid, opt_qid] += \ learning_rate * (reward + discount_factor * np.max(Q[new_state_qid, :]) - Q[state_qid, opt_qid]) state_qid = new_state_qid - else: - Q[state_qid, opt_qid] = 0 + Q[state_qid, :] = 0.0 running_score[0] *= 0.99999999 running_score[0] += g.get_score() running_score[1] *= 0.99999999