From: Alexander Schmidt Date: Mon, 2 Nov 2020 22:29:50 +0000 (+0100) Subject: 10 rods only X-Git-Url: http://git.treefish.org/~alex/shutbox.git/commitdiff_plain/f3518c9f8f23a3df8eea91b3d4f23b8685123392?ds=sidebyside;hp=8fe5c4eee79c73b0409d4e305e18b51b790e028c 10 rods only --- diff --git a/src/game.py b/src/game.py index 5fc133a..203f56a 100644 --- a/src/game.py +++ b/src/game.py @@ -2,7 +2,7 @@ import random class Game: def __init__(self): - self._shutable = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] + self._shutable = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self._diced = None self._options = [] self._score = 0 diff --git a/src/qtable.py b/src/qtable.py index 5dda444..0804187 100755 --- a/src/qtable.py +++ b/src/qtable.py @@ -9,8 +9,8 @@ from game import Game learning_rate = 0.1 discount_factor = 1.0 -states_dim = 147456 # 2^12 * 6^2 -actions_dim = 637 # 12+1 * (6+1)^2 +states_dim = 36864 # 2^10 * 6^2 +actions_dim = 539 # 10+1 * (6+1)^2 num_episodes = 10000000000 def find_state_qid(shutable, diced): @@ -18,13 +18,13 @@ def find_state_qid(shutable, diced): for rod in shutable: qid += pow(2, rod-1) for i in range(len(diced)): - qid += (diced[i]-1) * pow(6, i) * pow(2, 12) + qid += (diced[i]-1) * pow(6, i) * pow(2, 10) return qid def find_option_qid(option): qid = 0 for i in range(len(option)): - qid += option[i] * pow(7, i) * pow(13, len(option)-1) + qid += option[i] * pow(7, i) * pow(11, len(option)-1) return qid def select_option(opts, qs): @@ -34,7 +34,7 @@ def select_option(opts, qs): opt_qid = find_option_qid(opt) opt_qid_pairs.append( [opt, opt_qid] ) opt_qsum += qs[opt_qid] - random.shuffle(opt_qid_pairs) + #random.shuffle(opt_qid_pairs) ran_pt = random.uniform(0.0, opt_qsum) decision_pt = 0.0 for opt_qid_pair in opt_qid_pairs: @@ -57,15 +57,14 @@ for i in range(num_episodes): old_score = g.get_score() g.shut(opt) g.dice() - reward = (g.get_score() - old_score) / 12.0 + reward = (g.get_score() - old_score) / 11.0 new_state_qid = find_state_qid(g.get_shutable(), g.get_diced()) Q[state_qid, opt_qid] += \ learning_rate * (reward + discount_factor * np.max(Q[new_state_qid, :]) - Q[state_qid, opt_qid]) state_qid = new_state_qid - else: - Q[state_qid, opt_qid] = 0 + Q[state_qid, opt_qid] = 0 running_score[0] *= 0.99999999 running_score[0] += g.get_score() running_score[1] *= 0.99999999 diff --git a/src/random-agent.py b/src/random-agent.py index d9354a1..36c84d5 100755 --- a/src/random-agent.py +++ b/src/random-agent.py @@ -15,9 +15,9 @@ def play_game(): avg_score = 0.0 -for i in range(0, 10000): +for i in range(0, 100000): avg_score += play_game() -avg_score /= 10000 +avg_score /= 100000 print(avg_score)