]> git.treefish.org Git - phys/poster_lattice14.git/blob - poster_lattice14.tex
Inserted new finmu plot.
[phys/poster_lattice14.git] / poster_lattice14.tex
1
2 \documentclass[portrait,a0]{a0poster}
3 %
4 \usepackage{etex}
5
6 \usepackage[svgnames]{xcolor}
7
8 \usepackage{color,colortbl,times,graphicx,multicol}
9 \usepackage{psboxit,epsfig,wrapfig,boxedminipage}
10 \usepackage[absolute]{textpos}
11 \usepackage{subfigure}
12 \usepackage{tikz,slashed}
13 \usepackage{enumitem}
14 \usepackage{multirow}
15 \usepackage{caption}
16 \renewcommand{\familydefault}{\sfdefault}
17
18 \usepackage{amsfonts}
19
20 \color{black}
21
22 %some mathpackages
23 \usepackage[intlimits]{amsmath}
24 \usepackage{amssymb}
25 % \usepackage{bbm}
26 \usepackage{mathrsfs}
27 % \usepackage{dsfont}
28 %allg. Symbole
29 \usepackage{wasysym}
30 %float figures
31 \usepackage{wrapfig}
32 \usepackage{url}
33 \usepackage[tight]{units}
34 \usepackage{ctable}
35
36 %\setlength{\textheight}{110.32cm}
37 \setlength{\textheight}{116.32cm}
38 \setlength{\textwidth}{76.96cm}
39 \setlength{\voffset}{-20mm}
40 \setlength{\hoffset}{-40mm}
41 %\setlength{\oddsidemargin}{5cm}
42 \setlength{\oddsidemargin}{5.5cm}
43
44 \setlength{\parindent}{0cm}
45
46 \newlength{\agrheight}
47 \newlength{\agrdoubleheight}
48 \setlength{\agrheight}{11cm}
49 \setlength{\agrdoubleheight}{18cm}
50
51 \newlength{\nontextsep}
52 \setlength{\nontextsep}{1cm}
53 \newlength{\agrsep}
54 \setlength{\agrsep}{2cm}
55 \newlength{\agrdoublesep}
56 \setlength{\agrdoublesep}{2cm}
57
58 % separation between columns
59 \setlength{\columnsep}{1.5cm}
60
61
62 % user defined commands
63 % own commands
64 \newcommand{\eq}[1]{(\ref{#1})}
65 \newcommand{\fig}[1]{Fig.~{\ref{#1}}}
66 \newcommand{\FC}{\;,}
67 \newcommand{\FD}{\;.}
68 \newcommand{\RD}[1]{{\mathrm{red}(#1)}}
69 \newcommand{\RDH}[1]{{\mathrm{red5}(#1)}}
70 \newcommand{\LM}[1]{{\mathrm{lm}(#1)}}
71 \newcommand{\LMH}[1]{{\mathrm{lm5}(#1)}}
72 \newcommand{\SU}[1]{\mathrm{SU}(#1)}
73 \newcommand{\U}[1]{\mathrm{U}(#1)}
74 \newcommand{\dbar}{\overline{d}}
75 \newcommand{\ubar}{\overline{u}}
76
77 \definecolor{WildStrawberry}{cmyk}{0,0.96,0.39,0} % important phrases
78 \definecolor{CornflowerBlue}{cmyk}{0.65,0.13,0,0.4} % accentuation2
79 \definecolor{CornflowerBlueDark}{cmyk}{0.65,0.13,0,0.6} % structure
80 \definecolor{CadetBlue}{cmyk}{0.62,0.57,0.23,0} % gluons
81 \definecolor{Peach}{cmyk}{0,0.70,0.70,0.35} % ghosts
82 \definecolor{BurntOrange}{cmyk}{0,0.51,1,0} % gh-g vertices
83 \definecolor{Red}{cmyk}{0,1,1,0} % integral measure
84 \definecolor{SkyBlue}{cmyk}{0.62,0,0.12,0.3} % IR exponent
85
86 \definecolor{kfug-yellow}{rgb}{1 0.85 0}
87
88 \definecolor{Blue}{cmyk}{1,1,0,0} 
89 \definecolor{Red}{cmyk}{0,1,1,0} 
90
91 \renewcommand{\refname}{\vspace{-1.5cm}}
92
93 \renewcommand\footnoterule{}
94 \renewcommand{\thefootnote}{\fnsymbol{footnote}}
95
96 %\usepackage{showframe}
97
98 \setlength{\parindent}{0em}             % Absatzeinrueckung erste Zeile
99 \setlength{\parskip}{0em}                       % Absatzzwischenraum
100
101 \renewcommand{\baselinestretch}{1.1}
102
103
104
105
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 %%%%%%%%%%%%%%%%%%%%%%% document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
109
110 \begin{document}
111
112
113 \noindent
114 \hspace*{-36mm}
115 \includegraphics[scale=1.01,clip]{./hintergrund}
116
117
118 \vspace*{-1140mm}
119
120 \vspace{-45mm}
121 % \hfill \includegraphics[width=.1\textwidth]{../../figures/oeaw_logo}
122 \hfill 
123 \includegraphics[width=.2\textwidth]{./fwf-logo}
124 \hspace{-30mm}
125 %\vspace{-40mm}
126
127 \vspace{1cm}
128
129 %% Titel
130 \vspace*{10mm}
131 \begin{center}
132 \fcolorbox{white}{white}
133 {
134   \begin{minipage}[b]{600mm}
135     \begin{center}
136       \vspace*{10mm}
137        \Huge{\sf
138         \textcolor{cyan}{\bf Condensation in two flavor scalar electrodynamics with non-degenerate quark masses}}\\[7mm]
139         \Large{\bf{Alexander Schmidt} \sf{, Philippe de Forcrand, Christof Gattringer} }
140         \vspace{-1cm}
141     \end{center}
142    \vspace*{1cm}
143   \end{minipage}
144 }
145 \end{center}
146
147
148 \vspace{3cm}
149
150 %%%%%%%%%%%%%%%%%%%%%%% 2 columns %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
151 \begin{multicols}{2}
152
153
154 %%%%%%%%%%%%%%%%%%%%%%% MOTIVATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
155 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
156
157 \large \centering{\textcolor{cyan}{\LARGE\sf Motivation}}
158
159 \vspace{1.0cm}
160
161 \begin{minipage}[b]{350mm}
162
163   We study two-flavor scalar electrodynamics with two non-degenerate quark masses to find out about the characteristics of the condensation of this system induced by a finite chemical potential. 
164
165   \vspace{-24pt}
166 \end{minipage}
167 \vspace{2.0cm}
168
169
170 %%%%%%%%%%%%%%%%%%%%%%% ACTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
171 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
172
173 \large \centering{\textcolor{cyan}{\LARGE\sf The action}}
174
175 \vspace{1.0cm}
176
177 \begin{minipage}[b]{350mm}
178
179   In the conventional notation the lattice action is given by (the lattice constant is set to $a=1$)
180
181   \vspace{1cm}
182
183   \begin{flushleft}
184     \small
185     {\color{cyan}Gauge field $U_{\vec{n},\mu}$} \quad 
186     {\color{magenta}1st flavor Higgs field $\phi_{\vec{n}}^1$} \quad
187     {\color{ForestGreen}2nd flavor Higgs field $\phi_{\vec{n}}^2$} \quad \quad
188     {\color{gray}$U_{\vec{n},\mu} \in U(1)$, $\phi_{\vec{n}} \in \mathbb{C}$}
189   \end{flushleft}
190   \begin{eqnarray}
191     S \hspace{0.1cm} & = & S_G[U] + S_H[U,\phi] \label{latac} \\ \nonumber \\
192     S_G & = & -  \beta \sum_{\vec{n}} \sum_{\mu < \nu}  Re \; {\color{cyan}U_{\vec{n},\mu} \, U_{\vec{n} + \hat{\mu}, \nu} \, U_{\vec{n} + \hat{\nu}, \mu}^\star \, U_{\vec{n},\nu}^\star} 
193     \\
194     S_{H} & = & \sum_{\vec{n}}\! \Bigg[ \kappa^1 \mid \!\! {\color{magenta}\phi^1_{\vec{n}}} \!\! \mid^2
195     + \lambda^1 \mid \!\! {\color{magenta}\phi^1_{\vec{n}}} \!\! \mid^4  
196     + \kappa^2 \mid \!\! {\color{ForestGreen}\phi^2_{\vec{n}}} \!\! \mid^2
197     + \lambda^2 \mid \!\! {\color{ForestGreen}\phi^2_{\vec{n}}} \!\! \mid^4 \Bigg ] \ \\
198     &-& \sum_{\vec{n}}\! \Bigg[ \sum_{\mu}\! \Bigg( e^{\delta_{\mu 4} \mu^1}{\color{magenta}{\phi^1_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n},\mu}} \,  {\color{magenta}\phi^1_{\vec{n}+\widehat{\mu}}}   
199     + e^{-\delta_{\mu 4} \mu^1} {\color{magenta}{\phi^1_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n} - \widehat{\mu},\mu}^\star} \,  {\color{magenta}\phi^1_{\vec{n}-\widehat{\mu}}} \Bigg) \Bigg] \nonumber \\
200     &-& \sum_{\vec{n}}\! \Bigg[ \sum_{\mu}\! \Bigg( e^{\delta_{\mu 4} \mu^2}{\color{ForestGreen}{\phi^2_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n},\mu}^\star} \,  {\color{ForestGreen}\phi^2_{\vec{n}+\widehat{\mu}}}   
201     + e^{-\delta_{\mu 4} \mu^2} {\color{ForestGreen}{\phi^2_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n} - \widehat{\mu},\mu}} \,  {\color{ForestGreen}\phi^2_{\vec{n}-\widehat{\mu}}} \Bigg) \Bigg]
202     \nonumber
203   \end{eqnarray}
204   
205
206   \vspace{0.2cm}
207
208   with $\beta$ the inverse gauge coupling, $\kappa^i$ the mass parameters and $\lambda^i$ the Higgs couplings.
209
210   \vspace{-24pt}
211 \end{minipage}
212 \vspace{2.0cm}
213
214
215 %%%%%%%%%%%%%%%%%%%%%%% FLUX ACTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
216 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
217
218 \large \centering{\textcolor{cyan}{\LARGE\sf Flux representation of the action}}
219
220 \vspace{1.0cm}
221
222 \begin{minipage}[b]{350mm}
223
224   {\textcolor{cyan}{\Large\sf The basic idea}} 
225   is to expand the partition sum and perform the integral over the original degrees of freedom.
226
227   \vspace{0.5cm}
228
229   {\textcolor{cyan}{\Large\sf As an example}} 
230   we look at a single nearest neighbour term
231   \begin{eqnarray}
232     Z \; \propto \; e^{\phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}}}
233     \; = \; \sum_{k_{x,\mu}}    \frac{1}{ (k_{x,\mu})!} \; 
234     \bigg[ \, \phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}} \bigg]^{\, k_{x,\mu}} \quad .
235   \end{eqnarray}
236
237   Performing the integral over $\phi^i$ our partition sum no longer depends on the fields $\phi^i$
238   \begin{eqnarray}
239     Z \; = \; \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)-S_H(U,\phi)} &=& \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)} \sum_{\{k,l\}} F(U,\phi,k,l) \\
240     &=& \sum_{\{k,l\}} \sum_{\{U\}} \; e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\textnormal{perform this integral}} \nonumber \quad .
241   \end{eqnarray}
242
243   {\textcolor{cyan}{\Large\sf Finally}}
244   we end up with a real and positive partition sum plus constraints for the dual degrees of freedom
245   \begin{eqnarray}
246     Z \; = \; \sum_{\{k,l\}} \sum_{\{p\}} FB(k,l,p) = \hspace{-0.5cm} \sum_{\{p, k^1, l^1, k^2, l^2\}} \hspace{-0.5cm} {\cal W}(p,k,l) \, {\cal C}_B(p,k^1,k^2) \, {\cal C}_F(k^i) \quad .
247   \end{eqnarray}
248
249   \vspace{0.2cm}
250
251   %\begin{center}
252     %\includegraphics[height=13cm]{dofs.pdf}
253   %\end{center}
254
255   \vspace{-24pt}
256 \end{minipage}
257 \vspace{2.0cm}
258
259
260 %%%%%%%%%%%%%%%%%%%%%%% PHASE DIAGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
261 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
262
263 \large \centering{\textcolor{cyan}{\LARGE\sf Phase diagram} \cite{PhysRevLett.111.141601}}
264
265 \vspace{1.0cm}
266
267 \begin{minipage}[b]{350mm}
268
269   \begin{center}
270     \includegraphics[height=22cm]{phasediagram.pdf}
271   \end{center}
272
273   \vspace{-24pt}
274 \end{minipage}
275 \vspace{2.0cm}
276
277 %%%%%%%%%%%%%%%%%%%%%%% MASS CORRELATORS %%%%%%%%%%%%%%%%%%%%%%%%%%%
278 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
279
280 \large \centering{\textcolor{cyan}{\LARGE\sf Mass correlators in the confined phase (preliminary)}}
281
282 \vspace{1.0cm}
283
284 \begin{minipage}[b]{350mm}
285   
286   The masses of the bound states $U_1$ and $U_2$ are split because we set the effective masses of the two flavours to different values.
287
288   \vspace{-0.5cm}
289
290   \begin{center}
291     \includegraphics[height=14.5cm]{mass.pdf}
292   \end{center}
293
294   \vspace{-24pt}
295 \end{minipage}
296 \vspace{2.0cm}
297
298 %%%%%%%%%%%%%%%%%%%%%%% CONDENSATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
299 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
300
301 \large \centering{\textcolor{cyan}{\LARGE\sf Condensation (preliminary)}}
302
303 \vspace{1.0cm}
304
305 \begin{minipage}[b]{350mm}
306
307   We here show different observables as function of $\mu=\mu_1=\mu_2$. The dotted lines show the masses $U_1$ and $U_2$ determined from the plots above. For the observables $\langle\phi^*\phi\rangle$ and $\langle n \rangle$ red symbols belong to flavor 1 and green symbols to flavor 2. 
308   \begin{center}
309     \includegraphics[height=35cm]{finmu_840_highstat-crop.pdf}
310   \end{center}
311
312   \vspace{-24pt}
313 \end{minipage}
314 \vspace{2.0cm}
315
316 %%%%%%%%%%%%%%%%%%%%%%% SUMMARY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
317 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
318
319 \large \centering{\textcolor{cyan}{\LARGE\sf Summary}}
320
321 \vspace{1.0cm}
322
323 \begin{minipage}[b]{350mm}
324
325   Although we studied the condensation of the system with two non-degenerate quark masses, we do not see two seperate condensation points, as we would have expected in first place. At the moment we are doing further simulations to better understand the finite mu transition of the system and the consequences of having two different quark masses. 
326   
327   \vspace{-24pt}
328 \end{minipage}
329 \vspace{2.0cm}
330
331 %%%%%%%%%%%%%%%%%%%%%%%%%% Acknowledgments %%%%%%%%%%%%%%%%%%%%%%%%%%%%
332
333 \hrule
334 \vspace{1.0cm}
335 \large \centering{\textcolor{cyan}{\Large\sf Acknowledgments}}
336
337 \vspace{1.0cm}
338
339 \begin{minipage}[b]{350mm}
340 This work was supported by the Austrian Science Fund, FWF, through the Doctoral
341 Program on {\it Hadrons in Vacuum, Nuclei, and Stars} (FWF DK W1203-N16).
342 \end{minipage}
343
344 %%%%%%%%%%%%%%%%%%%%%%%%%% References %%%%%%%%%%%%%%%%%%%%%%%%%%%%
345
346 %\hrule
347 \vspace{1.7cm}
348 \large \centering{\textcolor{cyan}{\Large\sf References}}
349
350 \vspace{-1.0cm}
351
352 \begin{minipage}[b]{350mm}
353     %\begin{multicols}{2}
354
355       % \hrulefill
356       \vspace{-8cm}
357       \footnotesize
358       \bibliographystyle{plain}
359       \bibliography{bib}
360       \vspace{-3cm}
361
362     %\end{multicols}\vspace{-24pt}
363   \end{minipage}
364
365 \end{multicols}
366 \end{document}