+ S \hspace{0.1cm} & = & S_G[U] + S_H[U,\phi] \label{latac} \\ \nonumber \\
+ S_G & = & - \beta \sum_{\vec{n}} \sum_{\mu < \nu} Re \; {\color{cyan}U_{\vec{n},\mu} \, U_{\vec{n} + \hat{\mu}, \nu} \, U_{\vec{n} + \hat{\nu}, \mu}^\star \, U_{\vec{n},\nu}^\star}
+ \\
+ S_{H} & = & \sum_{\vec{n}}\! \Bigg[ \kappa^1 \mid \!\! {\color{magenta}\phi^1_{\vec{n}}} \!\! \mid^2
+ + \lambda^1 \mid \!\! {\color{magenta}\phi^1_{\vec{n}}} \!\! \mid^4
+ + \kappa^2 \mid \!\! {\color{ForestGreen}\phi^2_{\vec{n}}} \!\! \mid^2
+ + \lambda^2 \mid \!\! {\color{ForestGreen}\phi^2_{\vec{n}}} \!\! \mid^4 \Bigg ] \ \\
+ &-& \sum_{\vec{n}}\! \Bigg[ \sum_{\mu}\! \Bigg( e^{\delta_{\mu 4} \mu^1}{\color{magenta}{\phi^1_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n},\mu}} \, {\color{magenta}\phi^1_{\vec{n}+\widehat{\mu}}}
+ + e^{-\delta_{\mu 4} \mu^1} {\color{magenta}{\phi^1_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n} - \widehat{\mu},\mu}^\star} \, {\color{magenta}\phi^1_{\vec{n}-\widehat{\mu}}} \Bigg) \Bigg] \nonumber \\
+ &-& \sum_{\vec{n}}\! \Bigg[ \sum_{\mu}\! \Bigg( e^{\delta_{\mu 4} \mu^2}{\color{ForestGreen}{\phi^2_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n},\mu}^\star} \, {\color{ForestGreen}\phi^2_{\vec{n}+\widehat{\mu}}}
+ + e^{-\delta_{\mu 4} \mu^2} {\color{ForestGreen}{\phi^2_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n} - \widehat{\mu},\mu}} \, {\color{ForestGreen}\phi^2_{\vec{n}-\widehat{\mu}}} \Bigg) \Bigg]
+ \nonumber
+ \end{eqnarray}
+ \begin{flushright}
+ \small
+ {\color{gray}$U_{\vec{n},\mu} \in U(1)$, $\phi_{\vec{n}} \in \mathbb{C}$}
+ \end{flushright}
+
+
+ \vspace{0.2cm}
+
+ \vspace{0.2cm}
+
+ with $\beta$ the inverse gauge coupling, $\kappa^i$ the effective masses and $\lambda^i$ the Higgs coupling constants.
+
+ \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
+
+%%%%%%%%%%%%%%%%%%%%%%% FLUX ACTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Flux representation of the action}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+ {\textcolor{cyan}{\Large\sf The basic idea}}
+ is to expand the partition sum and perform the summation over the original degrees of freedom.
+
+ \vspace{0.5cm}
+
+ {\textcolor{cyan}{\Large\sf As an example}}
+ we look at a single nearest neighbour term
+ \begin{eqnarray}
+ Z \; \propto \; e^{\phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}}}
+ \; = \; \sum_{k_{x,\mu}} \frac{1}{ (k_{x,\mu})!} \;
+ \bigg[ \, \phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}} \bigg]^{\, k_{x,\mu}} \quad .
+ \nonumber
+ \end{eqnarray}
+
+ Performing the summation over $\phi^i$ our partition sum no longer depends on the fields $\phi^i$
+ \begin{eqnarray*}
+ Z \; = \; \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)-S_H(U,\phi)} &=& \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)} \sum_{\{k,l\}} F(U,\phi,k,l) \\
+ &=& \sum_{\{k,l\}} \sum_{\{U\}} \; e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\textnormal{perform this summation}} \quad .
+ \end{eqnarray*}
+
+ {\textcolor{cyan}{\Large\sf Finally}}
+ we end up with a real and positive partition sum plus constraints for the dual degrees of freedom
+ \begin{eqnarray*}
+ Z \; = \; \sum_{\{k,l\}} \sum_{\{p\}} FB(k,l,p) = \hspace{-0.5cm} \sum_{\{p, k^1, l^1, k^2, l^2\}} \hspace{-0.5cm} {\cal W}(p,k,l) \, {\cal C}_B(p,k^1,k^2) \, {\cal C}_F(k^i) \quad .
+ \end{eqnarray*}
+
+ \vspace{0.2cm}
+
+ \begin{center}
+ \includegraphics[height=13cm]{dofs.pdf}
+ \end{center}
+
+ \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
+
+%%%%%%%%%%%%%%%%%%%%%%% PHASE DIAGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Phase diagram}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+ \begin{center}
+ \includegraphics[height=20cm]{phasediagram.pdf}
+ \cite{PhysRevLett.111.141601}
+ \end{center}
+
+ \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
+%%%%%%%%%%%%%%%%%%%%%%% MASS CORRELATORS %%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Mass correlators}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+ \begin{center}
+ \includegraphics[height=28cm]{mass.pdf}
+ \end{center}
+
+ \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
+%%%%%%%%%%%%%%%%%%%%%%% CONDENSATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Condensation}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+ \begin{center}
+ %\includegraphics[height=28cm]{mass.pdf}
+ \end{center}
+
+ \vspace{-24pt}