]> git.treefish.org Git - phys/poster_lattice14.git/commitdiff
Christofs corrections.
authorAlexander Schmidt <alex@treefish.org>
Fri, 13 Jun 2014 13:28:34 +0000 (15:28 +0200)
committerAlexander Schmidt <alex@treefish.org>
Fri, 13 Jun 2014 13:28:34 +0000 (15:28 +0200)
mass.pdf
poster_lattice14.tex

index e98a9fc6569e28ed10fa52943ad9318447feb1f8..055793b8e8dcc1eec7f6624ae1d3e12803a18527 100644 (file)
Binary files a/mass.pdf and b/mass.pdf differ
index 43405bc8f85375b864261579f7ea36ccd65db6ec..8b5823f8bb85968dfd4b7f2ea84743e35483a7ff 100644 (file)
 \hspace{-30mm}
 %\vspace{-40mm}
 
+\vspace{1cm}
+
 %% Titel
 \vspace*{10mm}
 \begin{center}
 \fcolorbox{white}{white}
 {
-  \begin{minipage}[b]{400mm}
+  \begin{minipage}[b]{600mm}
     \begin{center}
       \vspace*{10mm}
        \Huge{\sf
        \textcolor{cyan}{\bf Condensation in two flavor scalar electrodynamics with non-degenerate quark masses}}\\[7mm]
-       \Large{\bf{Alexander Schmidt} \sf{, Philippe de Forcrand, Christof Gattringer} \\ \sf{\large University of Graz}}\\\vspace{-1cm}
+       \Large{\bf{Alexander Schmidt} \sf{, Philippe de Forcrand, Christof Gattringer} }
+        \vspace{-1cm}
     \end{center}
    \vspace*{1cm}
   \end{minipage}
 \end{center}
 
 
-\vspace{1.5cm}
+\vspace{3cm}
 
 %%%%%%%%%%%%%%%%%%%%%%% 2 columns %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{multicols}{2}
 
 
+%%%%%%%%%%%%%%%%%%%%%%% MOTIVATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Motivation}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+  We study two-flavor scalar electrodynamics with two non-degenerate quark masses to find out about the characteristics of the condensation of this system induced by a finite chemical potential. 
+
+  \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
+
 %%%%%%%%%%%%%%%%%%%%%%% ACTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
     \small
     {\color{cyan}Gauge field $U_{\vec{n},\mu}$} \quad 
     {\color{magenta}1st flavor Higgs field $\phi_{\vec{n}}^1$} \quad
-    {\color{ForestGreen}2nd flavor Higgs field $\phi_{\vec{n}}^2$}
+    {\color{ForestGreen}2nd flavor Higgs field $\phi_{\vec{n}}^2$} \quad \quad
+    {\color{gray}$U_{\vec{n},\mu} \in U(1)$, $\phi_{\vec{n}} \in \mathbb{C}$}
   \end{flushleft}
   \begin{eqnarray}
     S \hspace{0.1cm} & = & S_G[U] + S_H[U,\phi] \label{latac} \\ \nonumber \\
     + e^{-\delta_{\mu 4} \mu^2} {\color{ForestGreen}{\phi^2_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n} - \widehat{\mu},\mu}} \,  {\color{ForestGreen}\phi^2_{\vec{n}-\widehat{\mu}}} \Bigg) \Bigg]
     \nonumber
   \end{eqnarray}
-  \begin{flushright}
-    \small
-    {\color{gray}$U_{\vec{n},\mu} \in U(1)$, $\phi_{\vec{n}} \in \mathbb{C}$}
-  \end{flushright}
-
-
-  \vspace{0.2cm}
+  
 
   \vspace{0.2cm}
 
-  with $\beta$ the inverse gauge coupling, $\kappa^i$ the effective masses and $\lambda^i$ the Higgs coupling constants.
+  with $\beta$ the inverse gauge coupling, $\kappa^i$ the mass parameters and $\lambda^i$ the Higgs couplings.
 
   \vspace{-24pt}
 \end{minipage}
 %%%%%%%%%%%%%%%%%%%%%%% PHASE DIAGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-\large \centering{\textcolor{cyan}{\LARGE\sf Phase diagram}}
+\large \centering{\textcolor{cyan}{\LARGE\sf Phase diagram} \cite{PhysRevLett.111.141601}}
 
 \vspace{1.0cm}
 
 \begin{minipage}[b]{350mm}
 
   \begin{center}
-    \includegraphics[height=25cm]{phasediagram.pdf}
-    \cite{PhysRevLett.111.141601}
+    \includegraphics[height=22cm]{phasediagram.pdf}
   \end{center}
 
   \vspace{-24pt}
 %%%%%%%%%%%%%%%%%%%%%%% MASS CORRELATORS %%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-\large \centering{\textcolor{cyan}{\LARGE\sf Mass correlators in the confined phase}}
+\large \centering{\textcolor{cyan}{\LARGE\sf Mass correlators in the confined phase (preliminary)}}
 
 \vspace{1.0cm}
 
 \begin{minipage}[b]{350mm}
+  
+  The masses of the bound states $U_1$ and $U_2$ are split because we set the effective masses of the two flavours to different values.
 
-  For the fundamental correlators $F_1$ and $F_2$, as expected, we see no plateaus. The masses of the bound states $U_1$ and $U_2$ are split because we set the effective masses of the two flavours to different values.
+  \vspace{-0.5cm}
 
   \begin{center}
-    \includegraphics[height=28cm]{mass.pdf}
+    \includegraphics[height=14.5cm]{mass.pdf}
   \end{center}
 
   \vspace{-24pt}
 %%%%%%%%%%%%%%%%%%%%%%% CONDENSATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-\large \centering{\textcolor{cyan}{\LARGE\sf Condensation}}
+\large \centering{\textcolor{cyan}{\LARGE\sf Condensation (preliminary)}}
 
 \vspace{1.0cm}
 
   We here show different observables as function of $\mu$. The dotted lines show the masses $U_1$ and $U_1$ determined from the plots above.
 
   \begin{center}
-    \includegraphics[height=35cm]{finmu_840.pdf}
+    \includegraphics[height=35.8cm]{finmu_840.pdf}
   \end{center}
 
   \vspace{-24pt}
 \end{minipage}
 \vspace{2.0cm}
 
+%%%%%%%%%%%%%%%%%%%%%%% SUMMARY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\large \centering{\textcolor{cyan}{\LARGE\sf Summary}}
+
+\vspace{1.0cm}
+
+\begin{minipage}[b]{350mm}
+
+  Although we studied the condensation of the system with two non-degenerate quark masses, we do not see two seperate condensation points, as we would have expected in first place. At the moment we are doing further simulations to better understand the finite mu transition of the system and the consequences of having two different quark masses. 
+  
+  \vspace{-24pt}
+\end{minipage}
+\vspace{2.0cm}
+
 %%%%%%%%%%%%%%%%%%%%%%%%%% Acknowledgments %%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 \hrule