]> git.treefish.org Git - phys/proceedings_lattice13.git/blob - proceed.tex
5d1181d33d4e0be1efbe4cbf284c133bad48620f
[phys/proceedings_lattice13.git] / proceed.tex
1 \documentclass{PoS}
2
3 \usepackage[intlimits]{amsmath}
4 \usepackage{amssymb}
5 \usepackage{mathrsfs}
6 \usepackage{dsfont}
7 \usepackage{subfigure}
8
9 \title{Solving the sign problem of two-flavored scalar electrodynamics at finite chemical potential}
10
11 \ShortTitle{Solving the sign problem of two-falvored scalar electrodynamics at finite chemical potential}
12
13 \author{Ydalia Delgado
14 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
15 \\E-mail: \email{ydalia.delgado-mercado@uni-graz.at}}
16
17 \author{Christof Gattringer
18 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
19 \\E-mail: \email{christof.gattringer@uni-graz.at}}
20
21 \author{Alexander Schmidt
22 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
23 \\E-mail: \email{alexander.schmidt@uni-graz.at}}
24
25
26 \abstract{
27 We explore two-flavored scalar electrodynamics on the lattice, which has a complex phase problem 
28 at finite chemical potential. By rewriting the action in terms of dual variables 
29 this complex phase problem can be solved exactly. The dual variables are links and plaquettes, subject to non-trivial 
30 constraints, which have to be respected by the Monte Carlo algorithm. 
31 bvFor the simulation we use a local update that always obeys the constraints and the surface worm algorithm (SWA). 
32 The SWA is a generalization of the Prokof'ev Svistunov 
33 worm algorithm concept to simulate the dual representation of abelian Gauge-Higgs models on a lattice. 
34 We also assess the performance of the SWA and compare it with a local update in the dual representation. 
35 Finally, we determine the full phase diagram of the model.
36 }
37
38 \FullConference{XXIX International Symposium on Lattice Field Theory \\
39                  July 29 $-$ August 03 2013\\
40                  Mainz, Germany}
41  
42 \begin{document}
43
44 \section{Motivation}
45 \vspace{-1mm}
46 \noindent
47 At finite chemical potential $\mu$ the fermion determinant becomes complex
48 and can not be interpreted as a probability weight in the Monte Carlo simulation.
49 This complex phase problem has slowed down considerably the exploration of QCD
50 at finite density using Lattice QCD.  Although many efforts have been put into
51 solving the complex phase problem of QCD (see e.g. \cite{reviews}), the final goal
52 has not been achieved yet.
53
54 For some models or QCD in limiting cases, it is possible to deal with the complex phase 
55 problem (e.g. \cite{solve-sign-problem}).  Among the different techniques, we use the dual representation,
56 which has been shown to be a very powerful method that can solve the complex 
57 phase problem of different models \cite{dual} without making any approximation of the partition sum.  
58 In the following we present another example where the dual representation can be applied successfully.  
59 We consider a compact U(1) gauge field coupled with two complex scalar fields with opposite charge \cite{prl}. 
60 We explore the full phase diagram as a function of the inverse gauge coupling and the mass parameter, 
61 and present some preliminary results at finite $\mu$.
62
63 After mapping the degrees of freedom of the system to its dual variables, the weight in the 
64 partition sum is positive and real and usual Monte Carlo techniques can be applied.  However, 
65 the dual variables, links and plaquettes for this model, are subject to non-trivial constraints.
66 Therefore one has to choose a proper algorithm in order to sample the system efficiently.  In our case, we have
67 used two different Monte Carlo algorithms:  A local update (LMA) \cite{z3} and an extension \cite{swa} of the
68 Prokof'ev Svistunov worm algorithm \cite{worm}.   Here we present
69 some technical comparison of both algorithms in addition to the physics of the model.
70  
71  
72 \section{Two-flavored scalar electrodynamics}
73 \vspace{-1mm}
74 \noindent
75 We here study two-flavored scalar electrodynamics, which is a model of two flavors of oppositely charged complex fields $\phi_x, \chi_x \in \mathds{C}$ living on the 
76 sites $x$ and interacting via the gauge fields $U_{x,\sigma} \in$ U(1) sitting on the links. We use 4-d euclidean lattices of size $V_4 = N_s^3 \times N_t$ with periodic 
77 boundary conditions for all directions. The lattice spacing is set to 1, i.e., all dimensionful quantities 
78 are in units of the lattice spacing. Scale setting can be implemented as in any other lattice field theory 
79 and issues concerning the continuum behavior are, e.g., discussed in \cite{LuWe}.
80 We write the action as the sum, 
81 $S = S_U + S_\phi + S_\chi$, where $S_U$ is the gauge action and $S_\phi$ and $S_\chi$ are the actions for the two scalars. 
82 For the gauge action we use 
83 Wilson's form
84 \begin{equation} 
85 S_U \; = \; - \beta \, \sum_x \sum_{\sigma < \tau} \mbox{Re} \; U_{x,\sigma} U_{x+\widehat{\sigma}, \tau}
86 U_{x+\widehat{\tau},\sigma}^\star U_{x,\tau}^\star \; .
87 \label{gaugeaction}
88 \end{equation}
89 The sum runs over all plaquettes, $\widehat{\sigma}$ and $\widehat{\tau}$ denote the unit vectors in $\sigma$- and 
90 $\tau$-direction and the asterisk is used for complex conjugation.  
91 The action for the field $\phi$ is 
92 \begin{eqnarray}
93 && \qquad S_\phi   
94 =  \! \sum_x \!\Big(  M_\phi^2 \, |\phi_x|^2  + \lambda_\phi |\phi_x|^4  -
95 \label{matteraction} \\
96 && \sum_{\nu = 1}^4 \!
97 \big[  e^{-\mu_\phi  \delta_{\nu, 4} } \, \phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}} 
98 \, + \, 
99 e^{\mu_\phi \delta_{\nu, 4}} \, \phi_x^\star \, 
100 U_{x-\widehat{\nu}, \nu}^\star \, \phi_{x-\widehat{\nu}}  \big] \!  \Big) .
101 \nonumber
102 \end{eqnarray}
103 By $M_\phi^2$  we denote the combination $8 + m_\phi^2$, where $m_\phi$ is the bare mass
104 parameter of the field $\phi$ and $\mu_\phi$ is the chemical potential, which favors forward
105 hopping in time-direction (= 4-direction). The coupling for the quartic term is denoted as 
106 $\lambda_\phi$. The action for the field $\chi$ has the same form as
107 (\ref{matteraction}) but with complex conjugate link variables $U_{x,\nu}$ such that $\chi$ has
108 opposite charge.  $M_\chi^2$, $\mu_\chi$ and $\lambda_\chi$  are used for the parameters of $\chi$. 
109
110 The partition sum $Z = \int D[U] D[\phi,\chi] e^{-S_U - S_\chi - S_\phi}$  is obtained by
111 integrating the Boltzmann factor over all field configurations. The measures are products over
112 the measures for each individual degree of freedom.
113
114 Note that for $\mu_\phi \neq 0$ (\ref{matteraction}) is complex, i.e., in the
115 conventional form  the theory has a complex action problem.
116
117
118 \vskip2mm
119 \noindent  
120 {\bf Dual representation:} A detailed derivation of the dual representation for the 1-flavor
121 model is given in \cite{DeGaSch1} and the generalization to two flavors is straightforward.
122 The final result 
123 for the dual representation of the partition sum for the gauge-Higgs model with two flavors is
124 \begin{equation}
125 \hspace*{-3mm} Z = \!\!\!\!\!\! \sum_{\{p,j,\overline{j},l,\overline{l} \}} \!\!\!\!\!\!  {\cal C}_g[p,j,l]  \;  {\cal C}_s  [j] \;   {\cal C}_s  [l] \;  {\cal W}_U[p] 
126 \; {\cal W}_\phi \big[j,\overline{j}\,\big] \, {\cal W}_\chi \big[l,\overline{l}\,\big]  .
127 \label{Zfinal}
128 \end{equation} 
129 The sum runs over all configurations of the dual variables: The occupation numbers 
130 $p_{x,\sigma\tau} \in \mathds{Z}$ assigned to the plaquettes of the lattice and the flux variables  $j_{x,\nu},  l_{x,\nu} \in \mathds{Z}$ and
131 $\overline{j}_{x,\nu},  \overline{l}_{x,\nu} \in \mathds{N}_0$ living on the links. The flux variables $j$ and $l$ are subject
132 to the constraints ${\cal C}_s$ (here $\delta(n)$ denotes the Kronecker delta $\delta_{n,0}$ and $\partial_\nu f_x \equiv 
133 f_x - f_{x-\widehat{\nu}}$)
134 \begin{equation}
135  {\cal C}_s [j] \, = \, \prod_x \delta \! \left( \sum_\nu \partial_\nu j_{x,\nu}  \right) , \;
136 \label{loopconstU1}
137 \end{equation}
138 which enforce the conservation of $j$-flux and of $l$-flux at each site of the lattice.
139 Another constraint,
140 \begin{equation}
141  {\cal C}_g [p,j,l]  \! =\!  \prod_{x,\nu} \! \delta  \Bigg( \!\sum_{\nu < \alpha}\! \partial_\nu p_{x,\nu\alpha}  
142 - \!\sum_{\alpha<\nu}\! \partial_\nu p_{x,\alpha\nu} + j_{x,\nu} - l_{x,\nu} \! \Bigg)\! ,
143 \label{plaqconstU1}  
144 \end{equation}
145 connects the plaquette occupation numbers $p$ with the $j$- and $l$-variables. 
146 At every link it enforces the combined flux of the plaquette occupation 
147 numbers  plus the difference of $j$- and $l$-flux residing on that link to vanish. 
148
149 The constraints (\ref{loopconstU1}) and (\ref{plaqconstU1}) restrict the admissible
150 flux and plaquette occupation numbers giving rise to an interesting geometrical
151 interpretation: The $j$- and $l$-fluxes form closed oriented loops made of links. The integers
152 $j_{x,\nu}$ and $l_{x,\nu}$ determine how often a link is run through by loop segments, with negative
153 numbers indicating net flux in the negative direction. The flux conservation 
154 (\ref{loopconstU1}) ensures that only closed loops appear. Similarly, the constraint 
155 (\ref{plaqconstU1}) for the plaquette occupation numbers can be seen as a continuity
156 condition for surfaces made of plaquettes. The surfaces are either closed
157 surfaces without boundaries or open surfaces bounded by  $j$- or $l$-flux.
158
159 The configurations of plaquette occupation numbers and fluxes in (\ref{Zfinal}) come with 
160 weight factors 
161 \begin{eqnarray}
162 {\cal W}_U[p] & = & \!\! \! \prod_{x,\sigma < \tau} \! \! \!
163  I_{p_{x,\sigma\tau}}(\beta) \, ,
164 \\   
165 {\cal W}_\phi \big[j,\overline{j}\big] & = & 
166 \prod_{x,\nu}\! \frac{1}{(|j_{x,\nu}|\! +\! \overline{j}_{x,\nu})! \, 
167 \overline{j}_{x,\nu}!} 
168 \prod_x e^{-\mu j_{x,4}}  P_\phi \left( f_x \right) ,
169 \nonumber
170 \end{eqnarray}
171 with $f_x = \sum_\nu\!\big[ |j_{x,\nu}|\!+\!  |j_{x-\widehat{\nu},\nu}|  \!+\!
172 2\overline{j}_{x,\nu}\! +\! 2\overline{j}_{x-\widehat{\nu},\nu} \big]$ which is an even number. The $I_p(\beta)$
173 in the weights  ${\cal W}_U$ are the modified Bessel functions and the $P_\phi (2n)$ in 
174 ${\cal W}_\phi$  are the integrals $ P_\phi (2n)  =  \int_0^\infty dr \, r^{2n+1}
175 \,  e^{-M_\phi^2\, r^2 - \lambda_\phi r^4} = \sqrt{\pi/16 \lambda}  \, (-\partial/\partial M^2)^n \;  
176 e^{M^4 / 4 \lambda} [1- erf(M^2/2\sqrt{\lambda})]$, which we evaluate numerically and
177 pre-store for the Monte Carlo. The weight factors $ {\cal
178 W}_\chi$ are the same as the $ {\cal W}_\phi$, only  the parameters $M_\phi^2$,
179 $\lambda_\phi$, $\mu_\phi$ are replaced by  $M_\chi^2$, $\lambda_\chi$, $\mu_\chi$. All
180 weight factors are real and positive. The partition sum (\ref{Zfinal}) thus  is
181 accessible  to Monte Carlo techniques,  using the plaquette occupation numbers and the
182 flux variables as the new degrees of freedom. 
183
184
185 \section{Monte Carlo simulation}
186 \vspace*{-1mm}
187 \noindent
188 Because the dual variables are subject to non-trivial constraints, they cannot be modified randomly during the update.
189 An straight forward way to sample the system is to change allowed surfaces.  
190 Thus we choose the smallest possible structures in order to
191 increase the acceptance rate.  This algorithm is called local update
192 (LMA) and was used in \cite{z3,swa,prl}.  Other possibility is to use an extension of the worm
193 algorithm \cite{worm}, the so called surface worm algorithm \cite{swa}.  For this model we use both algorithms and
194 asses their performance.
195
196 Let us begin by describing the LMA. It consists of the following updates:
197 \begin{itemize}
198 \vspace*{-1mm}
199 \item A sweep for each unconstrained variable $\overline{l}$ and $\overline{j}$ 
200 rising or lowering their occupation number by one unit.
201 %
202 \vspace*{-1mm}
203 \item ``Plaquette update'': 
204 It consists of increasing or decreasing a plaquette occupation number
205 $p_{x,\nu\rho}$ and
206 the link fluxes (either $l_{x,\sigma}$ or $j_{x,\sigma}$) at the edges of $p_{x,\nu\rho}$ by $\pm 1$ as 
207 illustrated in Fig.~\ref{plaquette}. The change of $p_{x, \nu \rho}$ 
208 by $\pm 1$ is indicated by the signs $+$ or $-$, while the flux variables $l$($j$) are denoted by the red(blue) lines
209 and we use a dashed line to indicate a decrease by $-1$ and a full line for an increase by $+1$.
210 %
211 \vspace*{-1mm}
212 \item ``Winding loop update'': 
213 It consists of increasing or decreasing the occupation number of both link variables $l$ and $j$ by 
214 one unit along a winding loop in any of the 4 directions.  This update is very important because the winding loops
215 in time direction are the only objects that couple to the chemical potential.
216 %
217 \vspace*{-1mm}
218 \item ``Cube update'':  The plaquettes of 3-cubes
219 of our 4d lattice are changed according to one of the two patterns illustrated in 
220 Fig.~\ref{cube}. 
221 Although the plaquette and winding loop update are enough to satisfy ergodicity, 
222 the cube update helps for decorrelation in the region of 
223 parameters where the system is dominated by closed surfaces, i.e., the link
224 acceptance rate is small.
225 \end{itemize}
226 \vspace*{-1mm}
227 A full sweep consists of updating all links, plaquettes, 3-cubes and winding loops on the lattice,
228 offering one of the changes mentioned above and accepting them with the Metropolis 
229 probability computed from the local weight factors.
230
231 \begin{figure}[h]
232 \begin{center}
233 \includegraphics[width=\textwidth,clip]{pics/plaquettes}
234 \end{center}
235 \vspace{-4mm}
236 \caption{Plaquette update: A plaquette occupation number is changed by $+1$ or
237 $-1$ and the links $l$ (red) or $j$ (blue) of the plaquette are changed simultaneously. The
238 full line indicates an increase by +1 and a dashed line a decrease by $-1$. 
239 The directions $1 \le \nu_1 < \nu_2 \le 4$
240 indicate the plane of the plaquette.} \label{plaquette}
241 \vspace{-2mm}
242 \end{figure}
243
244 \begin{figure}[h]
245 \begin{center}
246 \includegraphics[width=0.7\textwidth,clip]{pics/cubes}
247 \end{center}
248 \vspace{-4mm}
249 \caption{Cube update: Here we show the changes in the plaquette occupation numbers. 
250 The edges of the 3-cube are parallel to 
251 the directions $1 \leq \nu_1 < \nu_2 < \nu_3 \leq 4$.} \label{cube}
252 \vspace*{-2mm}
253 \end{figure}
254
255 \noindent
256 Instead of the plaquette and cube updates we can use the worm algorithm.
257 Here we will shortly describe the SWA (see \cite{swa} for a detailed description).
258
259 The SWA is constructed by breaking up the smallest update, i.e., the plaquette update 
260 into smaller building blocks called ``segments'' 
261 (examples are shown in Fig.~\ref{segments}) used to build larger surfaces  
262 on which the flux and plaquette variables are changed.
263 In the SWA the constraints are temporarily violated at a link
264 $L_V$, the head of the worm, and the two sites at its endpoints.
265 The admissible configurations are produced using 3 steps:
266 \begin{enumerate}
267 \item The worm starts by changing either the $l$ or $j$  flux by $\pm 1$ at 
268 a randomly chosen link (step 1 in Fig.~\ref{worm}, a worm for $l$ fluxes starts).
269 \item The first link becomes the head of the worm $L_V$.
270 The defect at $L_V$ is then propagated through the lattice by 
271 attaching segments of the same kind of flux as the first segment, 
272 which are chosen in such a way that the constraints are always 
273 obeyed (step 2 in Fig.~\ref{worm}).
274 \item The defect is propagated through the lattice until the worm decides to
275 end with the insertion of another unit of link flux at $L_V$ (step 3 in Fig.~\ref{worm}).
276  
277 \end{enumerate}
278 A full sweep consists of $V_4$ worms with the $l$ fluxes and $V_4$ worms with the $j$ fluxes, 
279 plus a sweep of the unconstrained 
280 variables $\overline{l}$ and $\overline{j}$,
281 and a sweep of winding loops (as explained for the LMA).
282
283 \begin{figure}[h]
284 \begin{center}
285 \includegraphics[width=\textwidth,clip]{pics/segments}
286 \end{center}
287 \vspace{-4mm}
288 \caption{Examples of segments for the links $l$ (lhs.) and $j$ (rhs.) 
289 in the $\nu_1$-$\nu_2$-plane ($\nu_1 < \nu_2$).
290 The plaquette occupation numbers are changed as indicated by the signs. 
291 The full (dashed) links are changed by $+1$ ($-1$). The empty link shows
292 where the segment is attached to the worm and the dotted link is the new position of the link
293 $L_V$ where the constraints are violated.} \label{segments}
294 \vspace{-2mm}
295 \end{figure}
296
297 \begin{figure}[h]
298 \begin{center}
299 \includegraphics[width=\textwidth,clip]{pics/worm}
300 \end{center}
301 \vspace{-4mm}
302 \caption{Illustration of the worm algorithm.  See text for an explanation.} \label{worm}
303 \vspace{-2mm}
304 \end{figure} 
305
306
307 \section{Results}
308 \vspace{-1mm}
309 \noindent
310 In this section we describe the numerical analysis.  We first show the assessment of both algorithms
311 and then the physics of the model.  In both cases we use thermodynamical observables and their fluctuations.
312 We study in particular three observables:  the first and second derivatives with respect to the inverse
313 gauge coupling $\beta$, i.e., the plaquette expectation value and its susceptibility,
314
315 \begin{equation}
316 \langle U \rangle = \frac{1}{6 N_s^3 N_t}\frac{\partial}{\partial \beta} \ln\ Z\quad , \quad
317 \chi_{U} = \frac{1}{6 N_s^3 N_t}\frac{\partial^2}{\partial \beta^2} \ln\ Z\ .
318 \end{equation}
319
320 \noindent We also consider the particle number density $n$ 
321 and its susceptibility which are the derivatives 
322 with respect to the chemical potential,
323
324 \begin{equation}
325 n  = \frac{1}{N_s^3 N_t}\frac{\partial}{\partial \mu} \ln\ Z\quad , \quad
326 \chi_{n} = \frac{1}{N_s^3 N_t}\frac{\partial^2}{\partial \mu^2} \ln\ Z\ .
327 \end{equation}
328
329 \noindent Finally, we analyze the derivatives with respect to $M^2$,
330
331 \begin{equation}
332 \langle |\phi|^2 \rangle = \frac{1}{N_s^3 N_t}\frac{\partial}{\partial M^2} \ln\ Z\quad , \quad
333 \chi_{|\phi|^2} = \frac{1}{N_s^3 N_t}\frac{\partial^2}{\partial (M^2)^2} \ln\ Z\ .
334 \end{equation}
335
336 \subsection{Algorithm assessment}
337 \noindent
338 For the comparison of both algorithms we considered the U(1) gauge-Higgs model coupled
339 with two (as described previously) and with only one scalar field \cite{swa}.  
340 First we checked the correctness of the SWA comparing the results for different 
341 lattices sizes and parameters.  Examples for the one flavor model are shown in \cite{swa}.
342 Fig.~\ref{obs} shows two observables for the two flavor case.
343 The figure on the top shows 
344 $\langle |\phi|^2 \rangle$ (lhs.) and its susceptibility (rhs.) as a function of $\mu$ 
345 at $\beta = 0.85$ and $M^2 = 5.325$ on a lattice of size $12^3 \times 60$.  This point is located
346 in the Higgs phase and does not show any phase transition.  The plot on the bottom shows 
347 the particle number $n$ (lhs.) and its susceptibility (rhs.) as a function of $\mu$
348 for $\beta = 0.75$ and $M^2 = 5.73$ on a lattice of volume $12^3 \times 60$.  This plot shows
349 the transition from the confining phase to the Higgs phase. 
350 We observe very good agreement between both algorithms.
351
352 \begin{figure}[h]
353 \begin{center}
354 \hbox{\includegraphics[width=\textwidth,clip]{pics/aphi}}
355 \hbox{\hspace{4mm}\includegraphics[width=0.97\textwidth,clip]{pics/bn}}
356 \end{center}
357 \vspace{-6mm}
358 \caption{Observables as a function of $\mu$ for different parameters on a $12^3 \times 60$ lattice.
359 We compare results from the SWA (circles) and the LMA (triangles).} \label{obs}
360 \vspace*{-2mm}
361 \end{figure}
362
363 \noindent
364 In order to obtain a measure of the computational effort, we compared the normalized 
365 autocorrelation time $\overline{\tau}$ as defined in \cite{swa} of the SWA and LMA for 
366 the one flavored model for different volumes and parameters.  We concluded that,
367 the SWA outperforms the local update near a phase transition and if
368 the acceptance rate of the constrained link variable is not very low (eg. lhs. of Fig.~\ref{auto}).  
369 On the other hand, when the constrained links have a very low acceptance rate 
370 the worm algorithm has difficulties to efficiently sample the 
371 system because it modifies the link occupation number in every move, while the LMA has a sweep with only
372 closed surfaces. The plot on the rhs. of Fig.~\ref{auto} shows how $\overline{\tau}$ for
373 $U$ is larger for the SWA than for the LMA.  But this can be overcome by offering
374 a sweep of cube updates.
375
376 \begin{figure}[t]
377 \begin{center}
378 \includegraphics[width=\textwidth,clip]{pics/u2}
379 \end{center}
380 \vspace{-4mm}
381 \caption{Normalized autocorrelation times $\overline{\tau}$ for 2 different set
382 of parameters.  Left: parameters close to a first order phase transition. 
383 Right: low acceptance rate of the variable $l$.  Both simulations correspond
384 to a $16^4$ lattice.  Data taken from \cite{swa}.} \label{auto}
385 \vspace*{-2mm}
386 \end{figure}
387
388 \subsection{Physics}
389 One of the main results of these studies so far and already published in \cite{prl} is the full phase diagram of the considered model in the $\beta$-$M^2$ plane at $\mu=0$ and some selected chemical potential driven phase transitions of the measured observables. For the sake of completeness we here again want to show the obtained phase diagram, but as a proceedings-extra also present some plots which show the shifting of the phase-boundaries at $\mu \neq 0$ and measurements of the dual occupation numbers.
390
391 \subsubsection*{Phase-diagram at $\mu=0$}
392 \noindent
393 We studied the different transition lines in Fig.~\ref{phasediagram} using finite size analysis of the measured observables $\langle U \rangle$ and $\langle |\phi|^2 \rangle$ and the corresponding susceptibilities, finding that the phase boundary separating  Higgs- and
394 confining phase is strong first order, the line separating confining- and Coulomb phase is  of weak
395 first order, and the boundary between Coulomb- and Higgs phase is a continuous transition. 
396 Our results for the $\mu = 0$ phase diagram are in qualitative
397 agreement with the conventional results for related
398 models \cite{Lang}.
399 \begin{figure}[h]
400 \centering
401 \hspace*{-3mm}
402 \includegraphics[width=75mm,clip]{pics/phasediagram}
403 \caption{Phase diagram in the $\beta$-$M^2$ plane at $\mu = 0$. We show
404 the phase boundaries determined from the maxima of the susceptibilities $\chi_U$ and $\chi_{\phi}$ and the
405 inflection points of $\chi_n$.}
406 \label{phasediagram}
407 \end{figure}
408
409 \subsubsection*{Phase-boundaries at $\mu \neq 0$}
410 \noindent
411 In Fig.~\ref{muphases} we plot the observables $\langle U \rangle$, $\langle |\phi|^2 \rangle$, $\langle n \rangle$ as function of $\beta$ and $M^2$ for four different values of the chemical potential $\mu=0,0.5,1,1.5$.
412
413 \noindent
414 The phase-transition from the confining phase to the Coulomb phase shown in Fig.~\ref{phasediagram} is characterized by $\langle U \rangle$ growing larger across the transition but no significant changes in the other observables, which is the reason why the confinement-Coulomb transition can only be seen in the $\langle U \rangle$-plots.
415 For all observables it can be seen that the phase-boundaries in general become more pronounced at higher chemical potential and for the Higgs-Coulomb transition the transition type may even change from crossover to first order. Still, the shown results have to be considered preliminary and more detailed studies will be necessary to draw final conclusions. 
416 \begin{figure}[h]
417 \centering
418 \hspace*{-3mm}
419 \includegraphics[width=130mm,clip]{pics/muphases}
420 \caption{We show the observables $\langle U \rangle$, $\langle |\phi|^2 \rangle$, $\langle n \rangle$ as function of $\beta$ and $M^2$ for different $\mu = 0,0.5,1,1.5$. It can be seen how the phase boundaries change with increasing chemical potential.}
421 \label{muphases}
422 \end{figure}
423
424 \subsubsection*{Dual occupation numbers}
425 \noindent
426 The dual reformulation of a problem makes it possible to look at the same physics from a different perspective by studying the dynamics of the dual degrees of freedom instead of the conventional ones. This being a feature we find especially exciting about rewriting to dual variables, we here want to present an example.
427
428 \noindent
429 In Fig.~\ref{occutrans_plaq} we plot the plaquette expectation value $\langle U \rangle$ and the corresponding susceptibility $\chi_U$ as function of the chemical potential, for two different volumes $12^3\times60$ and $16^3\times60$. We see that for the larger volume the transition is shifted slightly towards lower chemical potential, but the volume dependence seems to be reasonably small. The parameters $\beta$ and $M^2$ are fixed to $\beta=0.75$ and $M^2=5.73$. Increasing the chemical potential takes us from the confining- to the Higgs-phase where we cross the phase boundary at some critical value of $\mu$, which is $\mu\simeq2.65$ for the larger and $\mu\simeq2.7$ for the smaller lattice, telling us that the Higgs phase is tilted towards the confining phase in $\mu$-direction. Below the critical value of the chemical potential both 
430 $\langle U \rangle$ and $\chi_U$ are independent of $\mu$, which is typical for a Silverblaze type transition \cite{cohen}.
431
432 \noindent
433 Then in Fig.~\ref{occutrans} we show the occupation numbers of all dual link variables $\bar{j}$, $\bar{l}$, $j$, $l$ and dual plaquette variables $p$ just below (top) and above (bottom) the critical chemical potential $\mu_c$. Here blue links/plaquettes depict positive occupation numbers, green links/plaquettes depict negative occupation numbers and links/plaquettes with $0$-occupation are spared out. It can be seen that below $\mu_c$ links and plaquettes are hardly occupied, while above $\mu_c$ they are highly occupied. In that sense the Silverblaze transition shown in Fig.~\ref{occutrans_plaq} can be understood as condensation phenomenon, which is a new perspective on the underlying physics we gained from the dual reformulation of the problem.
434
435 \begin{figure}[h]
436 \centering
437 \hspace*{-3mm}
438 \includegraphics[width=130mm,clip]{pics/occutrans_plaq}
439 \caption{We here show the plaquette expectation value $\langle U \rangle$ and the corresponding suscpetibility $\chi_U$ as function of the chemical potential, for two different volumes $12^3\times60$ and $16^3\times60$.}
440 \label{occutrans_plaq}
441 \end{figure}
442 \begin{figure}[h]
443 \centering
444 \hspace*{-3mm}
445 \includegraphics[width=130mm,clip]{pics/occutrans}
446 \caption{Dual link occupation numbers $\bar{j}$, $\bar{l}$, $j$, $l$ and dual plaquette occupation numbers $p$ just below (top) and above (bottom) the transition from the confining- to the Higgs-phase shown in the previous plot.}
447 \label{occutrans}
448 \end{figure}
449
450 \section*{Acknowledgments} 
451 \vspace{-1mm}
452 \noindent
453 We thank Hans Gerd Evertz 
454 for numerous discussions that helped to shape this project and for 
455 providing us with the software to compute the autocorrelation times. 
456 This work was supported by the Austrian Science Fund, 
457 FWF, DK {\it Hadrons in Vacuum, Nuclei, and Stars} (FWF DK W1203-N16). Y.~Delgado is supported by
458 the Research Executive Agency (REA) of the European Union 
459 under Grant Agreement number PITN-GA-2009-238353 (ITN STRONGnet), HP2 and TRR 55.
460
461 \begin{thebibliography}{123456}
462 \bibitem{reviews}
463   P.~Petreczky,
464   %``Review of recent highlights in lattice calculations at finite temperature and finite density,''
465   PoS ConfinementX {\bf } (2012) 028
466   [arXiv:1301.6188 [hep-lat]].
467   %%CITATION = ARXIV:1301.6188;%%
468   %3 citations counted in INSPIRE as of 21 Oct 2013
469 %  
470   G.~Aarts,
471   %``Complex Langevin dynamics and other approaches at finite chemical potential,''
472   PoS LATTICE {\bf 2012} (2012) 017
473   [arXiv:1302.3028 [hep-lat]].
474   %%CITATION = ARXIV:1302.3028;%%
475   %3 citations counted in INSPIRE as of 08 Apr 2013
476   
477 \bibitem{solve-sign-problem}
478   D.~Sexty,
479   %``Simulating full QCD at nonzero density using the complex Langevin equation,''
480   arXiv:1307.7748 [hep-lat].
481   %%CITATION = ARXIV:1307.7748;%%
482   %4 citations counted in INSPIRE as of 21 Oct 2013
483 %
484   S.~Chandrasekharan,
485   %``Fermion Bag Approach to Fermion Sign Problems,''
486   Eur.\ Phys.\ J.\ A {\bf 49} (2013) 90
487   [arXiv:1304.4900 [hep-lat]].
488   %%CITATION = ARXIV:1304.4900;%%
489   %1 citations counted in INSPIRE as of 21 Oct 2013
490 %
491   G.~Aarts, P.~Giudice, E.~Seiler and E.~Seiler,
492   %``Localised distributions and criteria for correctness in complex Langevin dynamics,''
493   Annals Phys.\  {\bf 337} (2013) 238
494   [arXiv:1306.3075 [hep-lat]].
495   %%CITATION = ARXIV:1306.3075;%%
496   %4 citations counted in INSPIRE as of 21 Oct 2013
497 %
498   G.~Aarts, L.~Bongiovanni, E.~Seiler, D.~Sexty and I.~-O.~Stamatescu,
499   %``Controlling complex Langevin dynamics at finite density,''
500   Eur.\ Phys.\ J.\ A {\bf 49} (2013) 89
501   [arXiv:1303.6425 [hep-lat]].
502   %%CITATION = ARXIV:1303.6425;%%
503   %6 citations counted in INSPIRE as of 21 Oct 2013
504 %
505   M.~Cristoforetti, F.~Di Renzo, A.~Mukherjee and L.~Scorzato,
506   %``Monte Carlo simulations on the Lefschetz thimble: taming the sign problem,''
507   Phys.\ Rev.\ D {\bf 88} (2013) 051501
508   [arXiv:1303.7204 [hep-lat]].
509   %%CITATION = ARXIV:1303.7204;%%
510   %4 citations counted in INSPIRE as of 21 Oct 2013
511 %
512   J.~Bloch,
513   %``A subset solution to the sign problem in simulations at non-zero chemical potential,''
514   J.\ Phys.\ Conf.\ Ser.\  {\bf 432} (2013) 012023.
515   %%CITATION = 00462,432,012023;%%
516 %
517   M.~Fromm, J.~Langelage, S.~Lottini, O.~Philipsen,
518   %``The QCD deconfinement transition for heavy quarks and all baryon chemical potentials,''
519   JHEP {\bf 1201} (2012) 042.
520   %  [arXiv:1111.4953 [hep-lat]].
521   %%CITATION = ARXIV:1111.4953;%%
522 %  
523   M.~Fromm, J.~Langelage, S.~Lottini, M.~Neuman, O.~Philipsen,
524   %``The silver blaze property for QCD with heavy quarks from the lattice,''
525   Phys.\ Rev.\ Lett. 110 (2013) 122001.
526   %%CITATION = ARXIV:1207.3005;%%
527   
528   
529 \bibitem{dual}
530   A.~Patel, Nucl.~Phys. B {\bf 243} (1984) 411;
531   Phys.\ Lett.\  B {\bf 139} (1984) 394.
532   %
533   T.~DeGrand and C.~DeTar, 
534   Nucl.\ Phys.\  B {\bf 225} (1983) 590. 
535   %   
536   J.~Condella and C.~DeTar,
537   %``Potts flux tube model at nonzero chemical potential,''
538   Phys.\ Rev.\  D {\bf 61} (2000) 074023,
539   [arXiv:hep-lat/9910028].
540   %%CITATION = PHRVA,D61,074023;%%
541 %
542   C.~Gattringer and T.~Kloiber,
543   %``Spectroscopy in finite density lattice field theory: An exploratory study in the relativistic Bose gas,''
544   Phys.\ Lett.\ B {\bf 720} (2013) 210
545   [arXiv:1212.3770 [hep-lat]].
546   %%CITATION = ARXIV:1212.3770;%%
547   %2 citations counted in INSPIRE as of 21 Oct 2013
548 %
549   T.~Sterling, J.~Greensite,
550   %``Portraits Of The Flux Tube In Qed In Three-dimensions: A Monte Carlo Simulation With External Sources,''
551   Nucl.\ Phys.\ B {\bf 220} (1983) 327.
552   %%CITATION = NUPHA,B220,327;%%
553 %
554   M.~Panero,
555   %``A Numerical study of confinement in compact QED,''
556   JHEP {\bf 0505} (2005) 066.
557   %[hep-lat/0503024].
558   %%CITATION = HEP-LAT/0503024;%%
559 %
560   V.~Azcoiti, E.~Follana, A.~Vaquero, G.~Di Carlo,
561   %``Geometric Algorithm for Abelian-Gauge Models,''
562   JHEP {\bf 0908} (2009) 008.
563 %  [arXiv:0905.0639 [hep-lat]].
564   %%CITATION = ARXIV:0905.0639;%%
565 %
566   T.~Korzec, U.~Wolff,
567   %``A worm-inspired algorithm for the simulation of Abelian gauge theories,''
568   PoS LATTICE {\bf 2010} (2010) 029.
569   %[arXiv:1011.1359 [hep-lat]].
570   %%CITATION = ARXIV:1011.1359;%%
571 %
572   P.N.~Meisinger, M.C.~Ogilvie,
573   %``The Sign Problem, PT Symmetry and Abelian Lattice Duality,''
574   arXiv:1306.1495 [hep-lat].
575   %%CITATION = ARXIV:1306.1495;%%
576   
577 \bibitem{prl}
578   Y.~D.~Mercado, C.~Gattringer and A.~Schmidt,
579   %``Dual lattice simulation of the U(1) gauge-Higgs model at finite density - an exploratory proof-of-concept study,''
580   Phys.\ Rev.\ Lett.\  {\bf 111} (2013) 141601
581   [arXiv:1307.6120 [hep-lat]].
582   %%CITATION = ARXIV:1307.6120;%%
583   
584 \bibitem{z3}
585   C.~Gattringer and A.~Schmidt,
586   %``Gauge and matter fields as surfaces and loops - an exploratory lattice study of the Z(3) Gauge-Higgs model,''
587   Phys.\ Rev.\ D {\bf 86} (2012) 094506
588   [arXiv:1208.6472 [hep-lat]].
589   %%CITATION = ARXIV:1208.6472;%%
590   %8 citations counted in INSPIRE as of 21 Oct 2013
591   
592 \bibitem{swa}
593   Y.~D.~Mercado, C.~Gattringer and A.~Schmidt,
594   %``Surface worm algorithm for abelian Gauge-Higgs systems on the lattice,''
595   Comput.\ Phys.\ Commun.\  {\bf 184} (2013) 1535
596   [arXiv:1211.3436 [hep-lat]].
597   %%CITATION = ARXIV:1211.3436;%%
598   %6 citations counted in INSPIRE as of 21 Oct 2013
599
600 \bibitem{worm}
601   N.~Prokof'ev and B.~Svistunov,
602   %``Worm Algorithms for Classical Statistical Models,''
603   Phys.\ Rev.\ Lett.\  {\bf 87} (2001) 160601.
604   %%CITATION = PRLTA,87,160601;%%
605
606 \bibitem{LuWe}
607 M.~L\"uscher, P.~Weisz,  Nucl.\ Phys.\ B {\bf 290} (1987) 25;
608 Nucl.\ Phys.\ B {\bf 295} (1988) 65;
609 Nucl.\ Phys.\ B {\bf 318} (1989) 705.
610
611 \bibitem{DeGaSch1} 
612   Y.~D.~Mercado, C.~Gattringer, A.~Schmidt,
613   %``Surface worm algorithm for abelian Gauge-Higgs systems on the lattice,''
614   Comp.\ Phys.\ Comm.\  {\bf 184}, 1535 (2013).
615   %[arXiv:1211.3436 [hep-lat]].
616   %%CITATION = ARXIV:1211.3436;%%
617   %5 citations counted in INSPIRE as of 16 Jul 2013
618
619 \bibitem{Lang}
620  K.~Jansen, J.~Jersak, C.B.~Lang, T.~Neuhaus, G.~Vones,
621   %``Phase Structure Of Scalar Compact Qed,''
622   Nucl.\ Phys.\ B {\bf 265} (1986) 129;
623   %%CITATION = NUPHA,B265,129;%%
624   % K.~Jansen, J.~Jersak, C.~B.~Lang, T.~Neuhaus and G.~Vones,
625   %``Phase Structure Of U(1) Gauge - Higgs Theory On D = 4 Lattices,''
626   Phys.\ Lett.\ B {\bf 155} (1985) 268.
627   %%CITATION = PHLTA,B155,268;%%
628   K.~Sawamura, T.~Hiramatsu, K.~Ozaki, I.~Ichinose,
629   %``Four-dimensional CP1 + U(1) lattice gauge theory for 3D antiferromagnets: Phase structure, gauge bosons and spin liquid,''
630   arXiv:0711.0818 [cond-mat.str-el].
631   %%CITATION = ARXIV:0711.0818;%% 
632   
633 \bibitem{cohen}
634 T.D.~Cohen,
635   %``Functional integrals for QCD at nonzero chemical potential and zero density,''
636   Phys.\ Rev.\ Lett.\  {\bf 91} (2003) 222001.
637   %[hep-ph/0307089].
638   %%CITATION = HEP-PH/0307089;%%
639
640 \end{thebibliography}
641
642 \end{document}