]> git.treefish.org Git - phys/proceedings_lattice13.git/blob - proceed.tex
7083dba1f01f47c2d7120b1d9cefc67096f38018
[phys/proceedings_lattice13.git] / proceed.tex
1 \documentclass{PoS}
2
3 \usepackage[intlimits]{amsmath}
4 \usepackage{amssymb}
5 \usepackage{mathrsfs}
6 \usepackage{dsfont}
7 \usepackage{subfigure}
8
9 \title{Solving the sign problem of scalar, two-flavored electrodynamics 
10 for finite chemical potential and exploring its full phase-diagram}
11
12 \ShortTitle{Solving the sign problem of scalar electrodynamics at final chemical potential}
13
14 \author{\speaker{Ydalia Delgado}
15 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
16 \\E-mail: \email{ydalia.delgado-mercado@uni-graz.at}}
17
18 \author{Christof Gattringer
19 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
20 \\E-mail: \email{christof.gattringer@uni-graz.at}}
21
22 \author{\speaker{Alexander Schmidt}
23 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
24 \\E-mail: \email{alexander.schmidt@uni-graz.at}}
25
26
27 \abstract{
28 We explore two-flavored scalar electrodynamics on the lattice, which has a complex phase problem 
29 at finite chemical potential. By rewriting the action in terms of dual variables 
30 this complex phase problem can be solved exactly. The dual variables are links and plaquettes, subject to non-trivial 
31 constraints, which have to be respected by the Monte Carlo algorithm. 
32 Therefore, for the simulation we use a local update and the surface worm algorithm (SWA). 
33 The SWA is a generalization of the Prokof'ev Svistunov 
34 worm algorithm concept to simulate the dual representation of abelian Gauge-Higgs models on a lattice. 
35 We also assess the performance of the SWA and compare it with a local update in the dual representation. 
36 Finally, we determine the full phase diagram of the model.
37 }
38
39 \FullConference{XXIX International Symposium on Lattice Field Theory \\
40                  July 29 $-$ August 03 2013\\
41                  Mainz, Germany}
42  
43 \begin{document}
44
45 \section{Motivation}
46 \vspace{-1mm}
47 \noindent
48 At finite chemical potential $\mu$ the fermion determinant becomes complex
49 and cannot be interpreted as a probability weight in the Monte Carlo simulation.
50 This complex phase problem has slowed down considerably the exploration of QCD
51 at finite density using Lattice QCDl.  Although many efforts have been put into
52 solving the complex phase problem of QCD (see e.g. \cite{reviews}), the final goal
53 has not been achieved yet.
54
55 For some models or QCD in limiting cases, it is possible to deal with the complex phase 
56 problem (e.g. \cite{solve-sign-problem}).  Among the different techniques, we use the dual representation,
57 which has been shown to be a very powerful method that can be solve the solve the complex 
58 phase problem without making any approximation of the partition sum, i.e. it is an exact method \cite{dual}.  
59 In this proceedings we present another example where the dual representation can be applied succesfully.  We consider a compact
60 U(1) gauge field coupled with two complex scalar fields with opposite charge. We explore the full phase diagram
61 as a function of the gauge coupling, the mass parameter and the chemical potential, which has not yet been studied in detail.
62 At finite density we present some preliminary results.
63
64 After mapping the degrees of freedom of the system to its dual variables, the terms of the 
65 partition sum are positive and real and usual Monte Carlo techniques can be applied.  However, 
66 the dual variables, links and plaquettes for this model, are subject to non-trivial constraints.
67 Therefore one has to choose a proper algorithm in order to sample the system efficiently.  In our case, we have
68 used two different Monte Carlo algorithms:  A local update (LMA) \cite{z3} and an extension \cite{swa} of the
69 Prokof'ev Svistunov worm algorithm \cite{worm}.   Here we present
70 some technical comparison of both algorithms in addition to the physics of the model.
71  
72  
73 \section{Two-flavored scalar electrodynamics}
74 \vspace{-1mm}
75 \noindent ?????????????
76
77
78 \section{Monte Carlo simulation}
79 \vspace*{-1mm}
80 \noindent
81 Because the dual variables are subject to non-trivial constraints, they cannot be updated randomly.
82 The most straight forward way to update the system is to change complete allowed objects.  In order to
83 increase the acceptance rate we use the smallest possible structures.  This algorithm is called local update
84 (LMA) and was used in \cite{z3,swa,prl}.  Other possibility is to use an extension of the worm
85 algorithm \cite{worm}, the so called surface worm algorithm \cite{swa}.  For this model we use both algorithms and
86 assess their performance.
87
88 First, we start describing the LMA. It consists of the following updates:
89 \begin{itemize}
90 \vspace*{-1mm}
91 \item A sweep for each unconstrained variable $\overline{l}$ and $\overline{k}$ 
92 rising or lowering their occupation number by one unit.
93 %
94 \vspace*{-1mm}
95 \item ``Plaquette update'': 
96 It consists of increasing or decreasing a plaquette occupation number
97 $p_{x,\nu\rho}$ and
98 the link fluxes (either $l_{x,\sigma}$ or $k_{x,\sigma}$) at the edges of $p_{x,\nu\rho}$ by $\pm 1$ as 
99 illustrated in Fig.~\ref{plaquette}. The change of $p_{x, \nu \rho}$ 
100 by $\pm 1$ is indicated by the signs $+$ or $-$, while the flux variables $l$($k$) are denoted by the red(blue) lines
101 and we use a dashed line to indicate a decrease by $-1$ and a full line for an increase by $+1$.
102 %
103 \vspace*{-1mm}
104 \item ``Winding loop update'': 
105 It consists of increasing or decreasing the occupation number of both link variables $l$ and $k$ by 
106 one unit along a winding loop in any of the 4 directions.  This update is very important because the winding loops
107 in time direction are the only objects that couple to the chemical potential.
108 %
109 \vspace*{-1mm}
110 \item ``Cube update'':  The plaquettes of 3-cubes
111 of our 4d lattice are changed according to one of the two patterns illustrated in 
112 Fig.~\ref{cube}. 
113 Although the plaquette and winding loop update are enough to satisfy ergodicity, 
114 the cube update helps for decorrelation in the region of 
115 parameters where the system is dominated by closed surfaces, i.e., the link
116 acceptance rate is small.
117 \end{itemize}
118 \vspace*{-1mm}
119 A full sweep consists of updating all links, plaquettes, 3-cubes and winding loops on the lattice,
120 offering one of the changes mentioned above and accepting them with the Metropolis 
121 probability computed from the local weight factors.
122
123 \begin{figure}[h]
124 \begin{center}
125 \includegraphics[width=\textwidth,clip]{pics/plaquettes}
126 \end{center}
127 \vspace{-4mm}
128 \caption{Plaquette update: A plaquette occupation number is changed by $+1$ or
129 $-1$ and the links $l$ (red) or $k$ (blue) of the plaquette are changed simultaneously. The
130 full line indicates an increase by +1 and a dashed line a decrease by $-1$. 
131 The directions $1 \le \nu_1 < \nu_2 \le 4$
132 indicate the plane of the plaquette.} \label{plaquette}
133 \vspace{-2mm}
134 \end{figure}
135
136 \begin{figure}[h]
137 \begin{center}
138 \includegraphics[width=0.7\textwidth,clip]{pics/cubes}
139 \end{center}
140 \vspace{-4mm}
141 \caption{Cube update: Here we show the changes in the plaquette occupation numbers. 
142 The edges of the 3-cube are parallel to 
143 the directions $1 \leq \nu_1 < \nu_2 < \nu_3 \leq 4$.} \label{cube}
144 \vspace*{-2mm}
145 \end{figure}
146
147 \noindent
148 Instead of the plaquette and cube updates we can use the worm algorithm.
149 Here we will shortly describe the SWA (see \cite{swa} for a detailed description) 
150 for the variable $l$ (red).
151 The algorithm for the other type of link variable works in exactly the same way.
152
153 The SWA is constructed by breaking up the smallest update, i.e., the plaquette update 
154 into smaller building blocks called ``segments'' 
155 (examples are shown in Fig.~\ref{segments}) used to build larger surfaces  
156 on which the flux and plaquette variables are changed.
157 In the SWA the constraints are temporarily violated at a link
158 $L_V$, the head of the worm, and the two sites at its endpoints.
159 The admissible configurations are produced using 3 steps:
160 \begin{enumerate}
161 \item The worm starts by changing the flux by $\pm 1$ at a randomly chosen link (step 1 in Fig.~\ref{worm}).
162 \item The first link becomes the head of the worm $L_V$.
163 The defect at $L_V$ is then propagated through the lattice by 
164 attaching segments, which are chosen in such a way that the constraints are always 
165 obeyed (step 2 in Fig.~\ref{worm}).
166 \item The defect is propagated through the lattice until the worm decides to
167 end with the insertion of another unit of link flux at $L_V$ (step 3 in Fig.~\ref{worm}).
168  
169 \end{enumerate}
170 A full sweep consists of $V_4$ worms using the SWA plus a sweep of the unconstraint 
171 variables $\overline{l}$ and $\overline{k}$,
172 and a sweep of winding loops (as explained in the LMA).
173
174 \begin{figure}[h]
175 \begin{center}
176 \includegraphics[width=\textwidth,clip]{pics/segments}
177 \end{center}
178 \vspace{-4mm}
179 \caption{Examples of positive (lhs.) and negative segments (rhs.) 
180 in the $\nu_1$-$\nu_2$-plane ($\nu_1 < \nu_2$).
181 The plaquette occupation numbers are changed as indicated by the signs. 
182 The full (dashed) links are changed by $+1$ ($-1$). The empty link shows
183 where the segment is attached to the worm and the dotted link is the new position of the link
184 $L_V$ where the constraints are violated.} \label{segments}
185 \vspace{-2mm}
186 \end{figure}
187
188 \begin{figure}[h]
189 \begin{center}
190 \includegraphics[width=\textwidth,clip]{pics/worm}
191 \end{center}
192 \vspace{-4mm}
193 \caption{Illustration of the worm algorithm.  See text for an explanation.} \label{worm}
194 \vspace{-2mm}
195 \end{figure}
196
197
198 \section{Algorithm Assessment}
199 \vspace{-1mm}
200 \noindent
201 For the assessment of both algorithms we used two different models, the U(1) gauge-Higgs model but couple
202 only to one scalar field (see \cite{swa}) and the model presented in this proceedings.  In both cases we 
203 analyzed the bulk observables (and their fluctuations): 
204 $U_P$ which is the derivative wrt. $\beta$ and $|\phi|^2$ (derivative wrt. 
205 $\kappa$).  First we checked the correctness of the SWA comparing the results for different 
206 lattices sizes and parameters.  Examples for the one flavor model are shown in \cite{swa}.
207 Fig.~\ref{obs} shows two observables for the two flavor case.  
208 $\langle |\phi|^2 \rangle$ (lhs.) and its susceptibility (rhs.) as a function of $\mu$ 
209 for point ``f'' (see phase diagram) on a lattice of size $12^3 \times 60$.  
210 We observe very good agreement among the different algorithms.
211
212 \begin{figure}[h]
213 \begin{center}
214 \includegraphics[width=\textwidth,clip]{pics/f}
215 \includegraphics[width=\textwidth,clip]{pics/f}
216 \end{center}
217 \vspace{-2mm}
218 \caption{Observables $\langle |\phi|^2 \rangle$ (lhs.) and $\chi_\phi$ (rhs.) 
219 as a function of $\mu$ for point f on a $12^3 \times 60$ lattice size.
220 We compare results from the SWA (circles) and the LMA (crosses).} \label{obs}
221 \vspace*{-2mm}
222 \end{figure}
223
224 \noindent
225 In order to obtain a measure of the computational effort, we compared the normalized 
226 autocorrelation time $\overline{\tau}$ as defined in \cite{swa} of the SWA and LMA for 
227 the one flavored model for different volumes and parameters.  We concluded that,
228 the SWA outperforms the local update near a phase transition and if
229 the acceptance rate of the constrained link variable is not very low (eg. lhs. of Fig.~\ref{auto}).  
230 On the other hand, when the constrained links have a very low acceptance rate 
231 the worm algorithm has difficulties to efficiently sample the 
232 system because it modifies the link occupation number in every move, while the LMA has a sweep with only
233 closed surfaces. The plot on the rhs. of Fig.~\ref{auto} shows how $\overline{\tau}$ for
234 $U_P$ is larger for the SWA than for the LMA.  But this can be overcome by offering
235 a sweep of cube updates.
236
237 \begin{figure}[t]
238 \begin{center}
239 \includegraphics[width=\textwidth,clip]{pics/u2}
240 \end{center}
241 \vspace{-4mm}
242 \caption{Normalized autocorrelation times $\overline{\tau}$ for 2 different set
243 of parameters.  Left: parameters close to a first order phase transition. 
244 Right: low acceptance rate of the variable $l$.  Both simulations correspond
245 to a $16^4$ lattice.  Data taken from \cite{swa}.} \label{auto}
246 \vspace*{-2mm}
247 \end{figure} 
248
249
250 \section{Results}
251 \vspace{-1mm}
252 \noindent xxxxx
253
254
255 \section*{Acknowledgments} 
256 \vspace{-1mm}
257 \noindent
258 We thank Hans Gerd Evertz 
259 for numerous discussions that helped to shape this project and for 
260 providing us with the software to compute the autocorrelation times. 
261 This work was supported by the Austrian Science Fund, 
262 FWF, DK {\it Hadrons in Vacuum, Nuclei, and Stars} (FWF DK W1203-N16)
263 and by the Research Executive Agency (REA) of the European Union 
264 under Grant Agreement number PITN-GA-2009-238353 (ITN STRONGnet).
265  
266 \begin{thebibliography}{123456}
267 \bibitem{reviews}
268   P.~Petreczky,
269   %``Review of recent highlights in lattice calculations at finite temperature and finite density,''
270   PoS ConfinementX {\bf } (2012) 028
271   [arXiv:1301.6188 [hep-lat]].
272   %%CITATION = ARXIV:1301.6188;%%
273   %3 citations counted in INSPIRE as of 21 Oct 2013
274 %  
275   G.~Aarts,
276   %``Complex Langevin dynamics and other approaches at finite chemical potential,''
277   PoS LATTICE {\bf 2012} (2012) 017
278   [arXiv:1302.3028 [hep-lat]].
279   %%CITATION = ARXIV:1302.3028;%%
280   %3 citations counted in INSPIRE as of 08 Apr 2013
281   
282 \bibitem{solve-sign-problem}
283   D.~Sexty,
284   %``Simulating full QCD at nonzero density using the complex Langevin equation,''
285   arXiv:1307.7748 [hep-lat].
286   %%CITATION = ARXIV:1307.7748;%%
287   %4 citations counted in INSPIRE as of 21 Oct 2013
288 %
289   S.~Chandrasekharan,
290   %``Fermion Bag Approach to Fermion Sign Problems,''
291   Eur.\ Phys.\ J.\ A {\bf 49} (2013) 90
292   [arXiv:1304.4900 [hep-lat]].
293   %%CITATION = ARXIV:1304.4900;%%
294   %1 citations counted in INSPIRE as of 21 Oct 2013
295 %
296   G.~Aarts, P.~Giudice, E.~Seiler and E.~Seiler,
297   %``Localised distributions and criteria for correctness in complex Langevin dynamics,''
298   Annals Phys.\  {\bf 337} (2013) 238
299   [arXiv:1306.3075 [hep-lat]].
300   %%CITATION = ARXIV:1306.3075;%%
301   %4 citations counted in INSPIRE as of 21 Oct 2013
302 %
303   G.~Aarts, L.~Bongiovanni, E.~Seiler, D.~Sexty and I.~-O.~Stamatescu,
304   %``Controlling complex Langevin dynamics at finite density,''
305   Eur.\ Phys.\ J.\ A {\bf 49} (2013) 89
306   [arXiv:1303.6425 [hep-lat]].
307   %%CITATION = ARXIV:1303.6425;%%
308   %6 citations counted in INSPIRE as of 21 Oct 2013
309 %
310   M.~Cristoforetti, F.~Di Renzo, A.~Mukherjee and L.~Scorzato,
311   %``Monte Carlo simulations on the Lefschetz thimble: taming the sign problem,''
312   Phys.\ Rev.\ D {\bf 88} (2013) 051501
313   [arXiv:1303.7204 [hep-lat]].
314   %%CITATION = ARXIV:1303.7204;%%
315   %4 citations counted in INSPIRE as of 21 Oct 2013
316 %
317   J.~Bloch,
318   %``A subset solution to the sign problem in simulations at non-zero chemical potential,''
319   J.\ Phys.\ Conf.\ Ser.\  {\bf 432} (2013) 012023.
320   %%CITATION = 00462,432,012023;%%
321 %
322   M.~Fromm, J.~Langelage, S.~Lottini, O.~Philipsen,
323   %``The QCD deconfinement transition for heavy quarks and all baryon chemical potentials,''
324   JHEP {\bf 1201} (2012) 042.
325   %  [arXiv:1111.4953 [hep-lat]].
326   %%CITATION = ARXIV:1111.4953;%%
327 %  
328   M.~Fromm, J.~Langelage, S.~Lottini, M.~Neuman, O.~Philipsen,
329   %``The silver blaze property for QCD with heavy quarks from the lattice,''
330   Phys.\ Rev.\ Lett. 110 (2013) 122001.
331   %%CITATION = ARXIV:1207.3005;%%
332   
333   
334 \bibitem{dual}
335   A.~Patel, Nucl.~Phys. B {\bf 243} (1984) 411;
336   Phys.\ Lett.\  B {\bf 139} (1984) 394.
337   %
338   T.~DeGrand and C.~DeTar, 
339   Nucl.\ Phys.\  B {\bf 225} (1983) 590. 
340   %   
341   J.~Condella and C.~DeTar,
342   %``Potts flux tube model at nonzero chemical potential,''
343   Phys.\ Rev.\  D {\bf 61} (2000) 074023,
344   [arXiv:hep-lat/9910028].
345   %%CITATION = PHRVA,D61,074023;%%
346 %
347   C.~Gattringer and T.~Kloiber,
348   %``Spectroscopy in finite density lattice field theory: An exploratory study in the relativistic Bose gas,''
349   Phys.\ Lett.\ B {\bf 720} (2013) 210
350   [arXiv:1212.3770 [hep-lat]].
351   %%CITATION = ARXIV:1212.3770;%%
352   %2 citations counted in INSPIRE as of 21 Oct 2013
353 %
354   T.~Sterling, J.~Greensite,
355   %``Portraits Of The Flux Tube In Qed In Three-dimensions: A Monte Carlo Simulation With External Sources,''
356   Nucl.\ Phys.\ B {\bf 220} (1983) 327.
357   %%CITATION = NUPHA,B220,327;%%
358 %
359   M.~Panero,
360   %``A Numerical study of confinement in compact QED,''
361   JHEP {\bf 0505} (2005) 066.
362   %[hep-lat/0503024].
363   %%CITATION = HEP-LAT/0503024;%%
364 %
365   V.~Azcoiti, E.~Follana, A.~Vaquero, G.~Di Carlo,
366   %``Geometric Algorithm for Abelian-Gauge Models,''
367   JHEP {\bf 0908} (2009) 008.
368 %  [arXiv:0905.0639 [hep-lat]].
369   %%CITATION = ARXIV:0905.0639;%%
370 %
371   T.~Korzec, U.~Wolff,
372   %``A worm-inspired algorithm for the simulation of Abelian gauge theories,''
373   PoS LATTICE {\bf 2010} (2010) 029.
374   %[arXiv:1011.1359 [hep-lat]].
375   %%CITATION = ARXIV:1011.1359;%%
376 %
377   P.N.~Meisinger, M.C.~Ogilvie,
378   %``The Sign Problem, PT Symmetry and Abelian Lattice Duality,''
379   arXiv:1306.1495 [hep-lat].
380   %%CITATION = ARXIV:1306.1495;%%
381   
382 \bibitem{z3}
383   C.~Gattringer and A.~Schmidt,
384   %``Gauge and matter fields as surfaces and loops - an exploratory lattice study of the Z(3) Gauge-Higgs model,''
385   Phys.\ Rev.\ D {\bf 86} (2012) 094506
386   [arXiv:1208.6472 [hep-lat]].
387   %%CITATION = ARXIV:1208.6472;%%
388   %8 citations counted in INSPIRE as of 21 Oct 2013
389   
390 \bibitem{swa}
391   Y.~D.~Mercado, C.~Gattringer and A.~Schmidt,
392   %``Surface worm algorithm for abelian Gauge-Higgs systems on the lattice,''
393   Comput.\ Phys.\ Commun.\  {\bf 184} (2013) 1535
394   [arXiv:1211.3436 [hep-lat]].
395   %%CITATION = ARXIV:1211.3436;%%
396   %6 citations counted in INSPIRE as of 21 Oct 2013
397
398 \bibitem{worm}
399   N.~Prokof'ev and B.~Svistunov,
400   %``Worm Algorithms for Classical Statistical Models,''
401   Phys.\ Rev.\ Lett.\  {\bf 87} (2001) 160601.
402   %%CITATION = PRLTA,87,160601;%%
403   
404 \bibitem{prl}
405   Y.~D.~Mercado, C.~Gattringer and A.~Schmidt,
406   %``Dual lattice simulation of the U(1) gauge-Higgs model at finite density - an exploratory proof-of-concept study,''
407   Phys.\ Rev.\ Lett.\  {\bf 111} (2013) 141601
408   [arXiv:1307.6120 [hep-lat]].
409   %%CITATION = ARXIV:1307.6120;%%
410
411 \end{thebibliography}
412
413 \end{document}