]> git.treefish.org Git - phys/proceedings_lattice13.git/blob - proceed.tex
corrected some typos. put localup and wormup in a subsection.
[phys/proceedings_lattice13.git] / proceed.tex
1 \documentclass{PoS}
2
3 \usepackage[intlimits]{amsmath}
4 \usepackage{amssymb}
5 \usepackage{mathrsfs}
6 \usepackage{dsfont}
7 \usepackage{subfigure}
8
9 \title{Solving the sign problem of two flavored scalar electrodynamics at finite chemical potential}
10
11 \ShortTitle{Solving the sign problem of two-falvored scalar electrodynamics at finite chemical potential}
12
13 \author{Ydalia Delgado
14 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
15 \\E-mail: \email{ydalia.delgado-mercado@uni-graz.at}}
16
17 \author{Christof Gattringer
18 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
19 \\E-mail: \email{christof.gattringer@uni-graz.at}}
20
21 \author{Alexander Schmidt
22 \\Institut f\"ur Physik, Karl-Franzens Universit\"at, Graz, Austria
23 \\E-mail: \email{alexander.schmidt@uni-graz.at}}
24
25
26 \abstract{
27 We explore two-flavored scalar electrodynamics on the lattice, which has a complex phase problem 
28 at finite chemical potential. By rewriting the action in terms of dual variables 
29 this complex phase problem can be solved exactly. The dual variables are links and plaquettes, subject to non-trivial 
30 constraints, which have to be respected by the Monte Carlo algorithm. For the simulation we use a local update that always obeys the constraints and the surface worm algorithm (SWA). 
31 The SWA is a generalization of the Prokof'ev Svistunov 
32 worm algorithm concept to simulate the dual representation of abelian Gauge-Higgs models on a lattice. 
33 We also assess the performance of the SWA and compare it with the local update algorithm in the dual representation. 
34 Finally, we determine the full phase diagram of the model.
35 }
36
37 \FullConference{XXIX International Symposium on Lattice Field Theory \\
38                  July 29 $-$ August 03 2013\\
39                  Mainz, Germany}
40  
41 \begin{document}
42
43 \section{Motivation}
44 \vspace{-1mm}
45 \noindent
46 At finite chemical potential $\mu$ the fermion determinant becomes complex
47 and can not be interpreted as a probability weight in the Monte Carlo simulation.
48 This complex phase problem has slowed down considerably the exploration of QCD
49 at finite density using Lattice QCD.  Although many efforts have been put into
50 solving the complex phase problem of QCD (see e.g. \cite{reviews}), the final goal
51 has not been achieved yet.
52
53 For some models or QCD in limiting cases, it is possible to deal with the complex phase 
54 problem (e.g. \cite{solve-sign-problem}).  Among the different techniques, we use the dual representation,
55 which has been shown to be a very powerful method that can solve the complex 
56 phase problem of different models \cite{dual} without making any approximation of the partition sum.  
57 In the following we present another example where the dual representation can be applied successfully.  
58 We consider a compact U(1) gauge field coupled with two complex scalar fields with opposite charge \cite{prl}. 
59 We explore the full phase diagram as a function of the inverse gauge coupling and the mass parameter, 
60 and present some preliminary results at finite $\mu$.
61
62 After mapping the degrees of freedom of the system to its dual variables, the weight in the 
63 partition sum is positive and real and usual Monte Carlo techniques can be applied.  However, 
64 the dual variables, links and plaquettes for this model, are subject to non-trivial constraints.
65 Therefore one has to choose a proper algorithm in order to sample the system efficiently.  In our case, we have
66 used two different Monte Carlo algorithms:  A local update algorithm (LMA) \cite{z3} and an extension \cite{swa} of the
67 Prokof'ev Svistunov worm algorithm \cite{worm}.   Here we present
68 some technical comparison of both algorithms in addition to the physics of the model.
69  
70  
71 \section{Two-flavored scalar electrodynamics}
72 \vspace{-1mm}
73 \noindent
74 We here study two-flavored scalar electrodynamics, which is a model of two flavors of oppositely charged complex fields $\phi_x, \chi_x \in \mathds{C}$ living on the 
75 sites $x$ and interacting via the gauge fields $U_{x,\sigma} \in$ U(1) sitting on the links. We use 4-d euclidean lattices of size $V_4 = N_s^3 \times N_t$ with periodic 
76 boundary conditions for all directions. The lattice spacing is set to 1, i.e., all dimensionful quantities 
77 are in units of the lattice spacing. Scale setting can be implemented as in any other lattice field theory 
78 and issues concerning the continuum behavior are, e.g., discussed in \cite{LuWe}.
79 We write the action as the sum, 
80 $S = S_U + S_\phi + S_\chi$, where $S_U$ is the gauge action and $S_\phi$ and $S_\chi$ are the actions for the two scalars. 
81 For the gauge action we use 
82 Wilson's form
83 \begin{equation} 
84 S_U \; = \; - \beta \, \sum_x \sum_{\sigma < \tau} \mbox{Re} \; U_{x,\sigma} U_{x+\widehat{\sigma}, \tau}
85 U_{x+\widehat{\tau},\sigma}^\star U_{x,\tau}^\star \; .
86 \label{gaugeaction}
87 \end{equation}
88 The sum runs over all plaquettes, $\widehat{\sigma}$ and $\widehat{\tau}$ denote the unit vectors in $\sigma$- and 
89 $\tau$-direction and the asterisk is used for complex conjugation.  
90 The action for the field $\phi$ is 
91 \begin{eqnarray}
92 && \qquad S_\phi   
93 =  \! \sum_x \!\Big(  M_\phi^2 \, |\phi_x|^2  + \lambda_\phi |\phi_x|^4  -
94 \label{matteraction} \\
95 && \sum_{\nu = 1}^4 \!
96 \big[  e^{-\mu_\phi  \delta_{\nu, 4} } \, \phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}} 
97 \, + \, 
98 e^{\mu_\phi \delta_{\nu, 4}} \, \phi_x^\star \, 
99 U_{x-\widehat{\nu}, \nu}^\star \, \phi_{x-\widehat{\nu}}  \big] \!  \Big) .
100 \nonumber
101 \end{eqnarray}
102 By $M_\phi^2$  we denote the combination $8 + m_\phi^2$, where $m_\phi$ is the bare mass
103 parameter of the field $\phi$ and $\mu_\phi$ is the chemical potential, which favors forward
104 hopping in time-direction (= 4-direction). The coupling for the quartic term is denoted as 
105 $\lambda_\phi$. The action for the field $\chi$ has the same form as
106 (\ref{matteraction}) but with complex conjugate link variables $U_{x,\nu}$ such that $\chi$ has
107 opposite charge.  $M_\chi^2$, $\mu_\chi$ and $\lambda_\chi$  are used for the parameters of $\chi$. 
108
109 The partition sum $Z = \int D[U] D[\phi,\chi] e^{-S_U - S_\chi - S_\phi}$  is obtained by
110 integrating the Boltzmann factor over all field configurations. The measures are products over
111 the measures for each individual degree of freedom.
112
113 Note that for $\mu_\phi \neq 0$ (\ref{matteraction}) is complex, i.e., in the
114 conventional form  the theory has a complex action problem.
115
116
117 \vskip2mm
118 \noindent  
119 {\bf Dual representation:} A detailed derivation of the dual representation for the 1-flavor
120 model is given in \cite{DeGaSch1} and the generalization to two flavors is straightforward.
121 The final result 
122 for the dual representation of the partition sum for the gauge-Higgs model with two flavors is
123 \begin{equation}
124 \hspace*{-3mm} Z = \!\!\!\!\!\! \sum_{\{p,j,\overline{j},l,\overline{l} \}} \!\!\!\!\!\!  {\cal C}_g[p,j,l]  \;  {\cal C}_s  [j] \;   {\cal C}_s  [l] \;  {\cal W}_U[p] 
125 \; {\cal W}_\phi \big[j,\overline{j}\,\big] \, {\cal W}_\chi \big[l,\overline{l}\,\big]  .
126 \label{Zfinal}
127 \end{equation} 
128 The sum runs over all configurations of the dual variables: The occupation numbers 
129 $p_{x,\sigma\tau} \in \mathds{Z}$ assigned to the plaquettes of the lattice and the flux variables  $j_{x,\nu},  l_{x,\nu} \in \mathds{Z}$ and
130 $\overline{j}_{x,\nu},  \overline{l}_{x,\nu} \in \mathds{N}_0$ living on the links. The flux variables $j$ and $l$ are subject
131 to the constraints ${\cal C}_s$ (here $\delta(n)$ denotes the Kronecker delta $\delta_{n,0}$ and $\partial_\nu f_x \equiv 
132 f_x - f_{x-\widehat{\nu}}$)
133 \begin{equation}
134  {\cal C}_s [j] \, = \, \prod_x \delta \! \left( \sum_\nu \partial_\nu j_{x,\nu}  \right) , \;
135 \label{loopconstU1}
136 \end{equation}
137 which enforce the conservation of $j$-flux and of $l$-flux at each site of the lattice.
138 Another constraint,
139 \begin{equation}
140  {\cal C}_g [p,j,l]  \! =\!  \prod_{x,\nu} \! \delta  \Bigg( \!\sum_{\nu < \alpha}\! \partial_\nu p_{x,\nu\alpha}  
141 - \!\sum_{\alpha<\nu}\! \partial_\nu p_{x,\alpha\nu} + j_{x,\nu} - l_{x,\nu} \! \Bigg)\! ,
142 \label{plaqconstU1}  
143 \end{equation}
144 connects the plaquette occupation numbers $p$ with the $j$- and $l$-variables. 
145 At every link it enforces the combined flux of the plaquette occupation 
146 numbers  plus the difference of $j$- and $l$-flux residing on that link to vanish. 
147
148 The constraints (\ref{loopconstU1}) and (\ref{plaqconstU1}) restrict the admissible
149 flux and plaquette occupation numbers giving rise to an interesting geometrical
150 interpretation: The $j$- and $l$-fluxes form closed oriented loops made of links. The integers
151 $j_{x,\nu}$ and $l_{x,\nu}$ determine how often a link is run through by loop segments, with negative
152 numbers indicating net flux in the negative direction. The flux conservation 
153 (\ref{loopconstU1}) ensures that only closed loops appear. Similarly, the constraint 
154 (\ref{plaqconstU1}) for the plaquette occupation numbers can be seen as a continuity
155 condition for surfaces made of plaquettes. The surfaces are either closed
156 surfaces without boundaries or open surfaces bounded by  $j$- or $l$-flux.
157
158 The configurations of plaquette occupation numbers and fluxes in (\ref{Zfinal}) come with 
159 weight factors 
160 \begin{eqnarray}
161 {\cal W}_U[p] & = & \!\! \! \prod_{x,\sigma < \tau} \! \! \!
162  I_{p_{x,\sigma\tau}}(\beta) \, ,
163 \\   
164 {\cal W}_\phi \big[j,\overline{j}\big] & = & 
165 \prod_{x,\nu}\! \frac{1}{(|j_{x,\nu}|\! +\! \overline{j}_{x,\nu})! \, 
166 \overline{j}_{x,\nu}!} 
167 \prod_x e^{-\mu j_{x,4}}  P_\phi \left( f_x \right) ,
168 \nonumber
169 \end{eqnarray}
170 with $f_x = \sum_\nu\!\big[ |j_{x,\nu}|\!+\!  |j_{x-\widehat{\nu},\nu}|  \!+\!
171 2\overline{j}_{x,\nu}\! +\! 2\overline{j}_{x-\widehat{\nu},\nu} \big]$ which is an even number. The $I_p(\beta)$
172 in the weights  ${\cal W}_U$ are the modified Bessel functions and the $P_\phi (2n)$ in 
173 ${\cal W}_\phi$  are the integrals $ P_\phi (2n)  =  \int_0^\infty dr \, r^{2n+1}
174 \,  e^{-M_\phi^2\, r^2 - \lambda_\phi r^4} = \sqrt{\pi/16 \lambda}  \, (-\partial/\partial M^2)^n \;  
175 e^{M^4 / 4 \lambda} [1- erf(M^2/2\sqrt{\lambda})]$, which we evaluate numerically and
176 pre-store for the Monte Carlo. The weight factors $ {\cal
177 W}_\chi$ are the same as the $ {\cal W}_\phi$, only  the parameters $M_\phi^2$,
178 $\lambda_\phi$, $\mu_\phi$ are replaced by  $M_\chi^2$, $\lambda_\chi$, $\mu_\chi$. All
179 weight factors are real and positive. The partition sum (\ref{Zfinal}) thus  is
180 accessible  to Monte Carlo techniques,  using the plaquette occupation numbers and the
181 flux variables as the new degrees of freedom. 
182
183
184 \section{Monte Carlo simulation}
185 \vspace*{-1mm}
186 \noindent
187 Because the dual variables are subject to non-trivial constraints, they cannot be modified randomly during the update.
188 A straight forward way to sample the system is to change allowed surfaces.  
189 Thus we choose the smallest possible structures in order to
190 increase the acceptance rate.  This algorithm is called local update
191 (LMA) and was used in \cite{z3,swa,prl}.  Another possibility is to use an extension of the worm
192 algorithm \cite{worm}, the so called surface worm algorithm \cite{swa}.  For this model we use both algorithms and
193 assess their performance.
194
195 \subsection{Local update algorithm}
196 Let us begin by describing the LMA. It consists of the following updates:
197 \begin{itemize}
198 \vspace*{-1mm}
199 \item A sweep for each unconstrained variable $\overline{l}$ and $\overline{j}$ 
200 rising or lowering their occupation number by one unit.
201 %
202 \vspace*{-1mm}
203 \item ``Plaquette update'': 
204 It consists of increasing or decreasing a plaquette occupation number
205 $p_{x,\nu\rho}$ and
206 the link fluxes (either $l_{x,\sigma}$ or $j_{x,\sigma}$) at the edges of $p_{x,\nu\rho}$ by $\pm 1$ as 
207 illustrated in Fig.~\ref{plaquette}. The change of $p_{x, \nu \rho}$ 
208 by $\pm 1$ is indicated by the signs $+$ or $-$, while the flux variables $l$($j$) are denoted by the red(blue) lines
209 and we use a dashed line to indicate a decrease by $-1$ and a full line for an increase by $+1$.
210 %
211 \vspace*{-1mm}
212 \item ``Winding loop update'': 
213 It consists of increasing or decreasing the occupation number of both link variables $l$ and $j$ by 
214 one unit along a winding loop in any of the 4 directions.  This update is very important because the winding loops
215 in time direction are the only objects that couple to the chemical potential.
216 %
217 \vspace*{-1mm}
218 \item ``Cube update'':  The plaquettes of 3-cubes
219 of our 4d lattice are changed according to one of the two patterns illustrated in 
220 Fig.~\ref{cube}. 
221 Although the plaquette and winding loop update are enough to satisfy ergodicity, 
222 the cube update helps for decorrelation in the region of 
223 parameters where the system is dominated by closed surfaces, i.e., the link
224 acceptance rate is small.
225 \end{itemize}
226 \vspace*{-1mm}
227 A full sweep consists of updating all links, plaquettes, 3-cubes and winding loops on the lattice,
228 offering one of the changes mentioned above and accepting them with the Metropolis 
229 probability computed from the local weight factors.
230
231 \begin{figure}[h]
232 \begin{center}
233 \includegraphics[width=\textwidth,clip]{pics/plaquettes}
234 \end{center}
235 \vspace{-4mm}
236 \caption{Plaquette update: A plaquette occupation number is changed by $+1$ or
237 $-1$ and the links $l$ (red) or $j$ (blue) of the plaquette are changed simultaneously. The
238 full line indicates an increase by +1 and a dashed line a decrease by $-1$. 
239 The directions $1 \le \nu_1 < \nu_2 \le 4$
240 indicate the plane of the plaquette.} \label{plaquette}
241 \vspace{-2mm}
242 \end{figure}
243
244 \begin{figure}[h]
245 \begin{center}
246 \includegraphics[width=0.7\textwidth,clip]{pics/cubes}
247 \end{center}
248 \vspace{-4mm}
249 \caption{Cube update: Here we show the changes in the plaquette occupation numbers. 
250 The edges of the 3-cube are parallel to 
251 the directions $1 \leq \nu_1 < \nu_2 < \nu_3 \leq 4$.} \label{cube}
252 \vspace*{-2mm}
253 \end{figure}
254
255 \subsection{Worm algorithm}
256 \noindent
257 Instead of the plaquette and cube updates we can use the worm algorithm.
258 Here we will shortly describe the SWA (see \cite{swa} for a detailed description).
259
260 The SWA is constructed by breaking up the smallest update, i.e., the plaquette update 
261 into smaller building blocks called ``segments'' 
262 (examples are shown in Fig.~\ref{segments}) used to build larger surfaces  
263 on which the flux and plaquette variables are changed.
264 In the SWA the constraints are temporarily violated at a link
265 $L_V$, the head of the worm, and the two sites at its endpoints.
266 The admissible configurations are produced using 3 steps:
267 \begin{enumerate}
268 \item The worm starts by changing either the $l$ or $j$  flux by $\pm 1$ at 
269 a randomly chosen link (step 1 in Fig.~\ref{worm}, a worm for $l$ fluxes starts).
270 \item The first link becomes the head of the worm $L_V$.
271 The defect at $L_V$ is then propagated through the lattice by 
272 attaching segments of the same kind of flux as the first segment, 
273 which are chosen in such a way that the constraints are always 
274 obeyed (step 2 in Fig.~\ref{worm}).
275 \item The defect is propagated through the lattice until the worm decides to
276 end with the insertion of another unit of link flux at $L_V$ (step 3 in Fig.~\ref{worm}).
277  
278 \end{enumerate}
279 A full sweep consists of $V_4$ worms with the $l$ fluxes and $V_4$ worms with the $j$ fluxes, 
280 plus a sweep of the unconstrained 
281 variables $\overline{l}$ and $\overline{j}$,
282 and a sweep of winding loops (as explained for the LMA).
283
284 \begin{figure}[h]
285 \begin{center}
286 \includegraphics[width=\textwidth,clip]{pics/segments}
287 \end{center}
288 \vspace{-4mm}
289 \caption{Examples of segments for the links $l$ (lhs.) and $j$ (rhs.) 
290 in the $\nu_1$-$\nu_2$-plane ($\nu_1 < \nu_2$).
291 The plaquette occupation numbers are changed as indicated by the signs. 
292 The full (dashed) links are changed by $+1$ ($-1$). The empty link shows
293 where the segment is attached to the worm and the dotted link is the new position of the link
294 $L_V$ where the constraints are violated.} \label{segments}
295 \vspace{-2mm}
296 \end{figure}
297
298 \begin{figure}[h]
299 \begin{center}
300 \includegraphics[width=\textwidth,clip]{pics/worm}
301 \end{center}
302 \vspace{-4mm}
303 \caption{Illustration of the worm algorithm.  See text for an explanation.} \label{worm}
304 \vspace{-2mm}
305 \end{figure} 
306
307
308 \section{Results}
309 \vspace{-1mm}
310 \noindent
311 In this section we describe the numerical analysis.  We first show the assessment of both algorithms
312 and then the physics of the model.  In both cases we use thermodynamical observables and their fluctuations.
313 We study in particular three observables:  The first and second derivatives with respect to the inverse
314 gauge coupling $\beta$, i.e., the plaquette expectation value and its susceptibility,
315
316 \begin{equation}
317 \langle U \rangle = \frac{1}{6 N_s^3 N_t}\frac{\partial}{\partial \beta} \ln\ Z\quad , \quad
318 \chi_{U} = \frac{1}{6 N_s^3 N_t}\frac{\partial^2}{\partial \beta^2} \ln\ Z\ .
319 \end{equation}
320
321 \noindent We also consider the particle number density $n$ 
322 and its susceptibility which are the derivatives 
323 with respect to the chemical potential,
324
325 \begin{equation}
326 n  = \frac{1}{N_s^3 N_t}\frac{\partial}{\partial \mu} \ln\ Z\quad , \quad
327 \chi_{n} = \frac{1}{N_s^3 N_t}\frac{\partial^2}{\partial \mu^2} \ln\ Z\ .
328 \end{equation}
329
330 \noindent Finally, we analyze the derivatives with respect to $M^2$,
331
332 \begin{equation}
333 \langle |\phi|^2 \rangle = \frac{1}{N_s^3 N_t}\frac{\partial}{\partial M^2} \ln\ Z\quad , \quad
334 \chi_{|\phi|^2} = \frac{1}{N_s^3 N_t}\frac{\partial^2}{\partial (M^2)^2} \ln\ Z\ .
335 \end{equation}
336
337 \subsection{Algorithm assessment}
338 \noindent
339 For the comparison of both algorithms we considered the U(1) gauge-Higgs model coupled
340 with two (as described above) and with only one scalar field \cite{swa}.  
341 First we checked the correctness of the SWA comparing the results for different 
342 lattices sizes and parameters.  Examples for the one flavor model are shown in \cite{swa}.
343 Fig.~\ref{obs} shows two observables for the two flavor case.
344 The figure on the top shows 
345 $\langle |\phi|^2 \rangle$ (lhs.) and its susceptibility (rhs.) as a function of $\mu$ 
346 at $\beta = 0.85$ and $M^2 = 5.325$ on a lattice of size $12^3 \times 60$.  This point is located
347 in the Higgs phase and does not show any phase transition.  The plot on the bottom shows 
348 the particle number $n$ (lhs.) and its susceptibility (rhs.) as a function of $\mu$
349 for $\beta = 0.75$ and $M^2 = 5.73$ on a lattice of volume $12^3 \times 60$.  This plot shows
350 the transition from the confining phase to the Higgs phase. 
351 We observe very good agreement between both algorithms.
352
353 \begin{figure}[h]
354 \begin{center}
355 \hbox{\includegraphics[width=\textwidth,clip]{pics/aphi}}
356 \hbox{\hspace{4mm}\includegraphics[width=0.97\textwidth,clip]{pics/bn}}
357 \end{center}
358 \vspace{-6mm}
359 \caption{Observables as a function of $\mu$ for different parameters on a $12^3 \times 60$ lattice.
360 We compare results from the SWA (circles) and the LMA (triangles).} \label{obs}
361 \vspace*{-2mm}
362 \end{figure}
363
364 \noindent
365 In order to obtain a measure of the computational effort, we compared the normalized 
366 autocorrelation time $\overline{\tau}$ as defined in \cite{swa} of the SWA and LMA for 
367 the one flavored model for different volumes and parameters.  We concluded that,
368 the SWA outperforms the local update near a phase transition and if
369 the acceptance rate of the constrained link variable is not very low (eg. lhs. of Fig.~\ref{auto}).  
370 On the other hand, when the constrained links have a very low acceptance rate 
371 the worm algorithm has difficulties to efficiently sample the 
372 system because it modifies the link occupation number in every move, while the LMA has a sweep with only
373 closed surfaces. The plot on the rhs. of Fig.~\ref{auto} shows how $\overline{\tau}$ for
374 $U$ is larger for the SWA than for the LMA.  But this can be overcome by offering
375 a sweep of cube updates.
376
377 \begin{figure}[t]
378 \begin{center}
379 \includegraphics[width=\textwidth,clip]{pics/u2}
380 \end{center}
381 \vspace{-4mm}
382 \caption{Normalized autocorrelation times $\overline{\tau}$ for 2 different set
383 of parameters.  Left: parameters close to a first order phase transition. 
384 Right: low acceptance rate of the variable $l$.  Both simulations correspond
385 to a $16^4$ lattice.  Data taken from \cite{swa}.} \label{auto}
386 \vspace*{-2mm}
387 \end{figure}
388
389 \subsection{Physics}
390 One of the main results of these studies so far and already published in \cite{prl} is the full phase diagram of the considered model in the $\beta$-$M^2$ plane at $\mu=0$ and some selected chemical potential driven phase transitions of the measured observables. For the sake of completeness we here again want to show the obtained phase diagram, but as a proceedings-extra also present some plots which show the shifting of the phase-boundaries at $\mu \neq 0$ and measurements of the dual occupation numbers.
391
392 \subsubsection*{Phase-diagram at $\mu=0$}
393 \noindent
394 We studied the different transition lines in Fig.~\ref{phasediagram} using finite size analysis of the measured observables $\langle U \rangle$ and $\langle |\phi|^2 \rangle$ and the corresponding susceptibilities, finding that the phase boundary separating  Higgs- and
395 confining phase is strong first order, the line separating confining- and Coulomb phase is  of weak
396 first order, and the boundary between Coulomb- and Higgs phase is a continuous transition. 
397 Our results for the $\mu = 0$ phase diagram are in qualitative
398 agreement with the conventional results for related
399 models \cite{Lang}.
400 \begin{figure}[h]
401 \centering
402 \hspace*{-3mm}
403 \includegraphics[width=75mm,clip]{pics/phasediagram}
404 \caption{Phase diagram in the $\beta$-$M^2$ plane at $\mu = 0$. We show
405 the phase boundaries determined from the maxima of the susceptibilities $\chi_U$ and $\chi_{\phi}$ and the
406 inflection points of $\chi_n$.}
407 \label{phasediagram}
408 \end{figure}
409
410 \subsubsection*{Phase-boundaries at $\mu \neq 0$}
411 \noindent
412 In Fig.~\ref{muphases} we plot the observables $\langle U \rangle$, $\langle |\phi|^2 \rangle$, $\langle n \rangle$ as function of $\beta$ and $M^2$ for four different values of the chemical potential $\mu=0,0.5,1,1.5$.
413
414 \noindent
415 The phase-transition from the confining phase to the Coulomb phase shown in Fig.~\ref{phasediagram} is characterized by $\langle U \rangle$ growing larger across the transition but no significant changes in the other observables, which is the reason why the confinement-Coulomb transition can only be seen in the $\langle U \rangle$-plots.
416 For all observables it can be seen that the phase-boundaries in general become more pronounced at higher chemical potential and for the Higgs-Coulomb transition the transition type may even change from crossover to first order. Still, the shown results have to be considered preliminary and more detailed studies will be necessary to draw final conclusions. 
417 \begin{figure}[h]
418 \centering
419 \hspace*{-3mm}
420 \includegraphics[width=130mm,clip]{pics/muphases}
421 \caption{We show the observables $\langle U \rangle$, $\langle |\phi|^2 \rangle$, $\langle n \rangle$ as function of $\beta$ and $M^2$ for different $\mu = 0,0.5,1,1.5$. It can be seen how the phase boundaries change with increasing chemical potential.}
422 \label{muphases}
423 \end{figure}
424
425 \subsubsection*{Dual occupation numbers}
426 \noindent
427 The dual reformulation of a problem makes it possible to look at the same physics from a different perspective by studying the dynamics of the dual degrees of freedom instead of the conventional ones. This being a feature we find especially exciting about rewriting to dual variables, we here want to present an example.
428
429 \noindent
430 In Fig.~\ref{occutrans_plaq} we plot the plaquette expectation value $\langle U \rangle$ and the corresponding susceptibility $\chi_U$ as function of the chemical potential, for two different volumes $12^3\times60$ and $16^3\times60$. We see that for the larger volume the transition is shifted slightly towards lower chemical potential, but the volume dependence seems to be reasonably small. The parameters $\beta$ and $M^2$ are fixed to $\beta=0.75$ and $M^2=5.73$. Increasing the chemical potential takes us from the confining- to the Higgs-phase where we cross the phase boundary at some critical value of $\mu$, which is $\mu\simeq2.65$ for the larger and $\mu\simeq2.7$ for the smaller lattice, telling us that the Higgs phase is tilted towards the confining phase in $\mu$-direction. Below the critical value of the chemical potential both 
431 $\langle U \rangle$ and $\chi_U$ are independent of $\mu$, which is characteristic for a Silverblaze type transition \cite{cohen}.
432
433 \noindent
434 Then in Fig.~\ref{occutrans} we show the occupation numbers of all dual link variables $\bar{j}$, $\bar{l}$, $j$, $l$ and dual plaquette variables $p$ just below (top) and above (bottom) the critical chemical potential $\mu_c$. Here blue links/plaquettes depict positive occupation numbers, green links/plaquettes depict negative occupation numbers and links/plaquettes with $0$-occupation are spared out. It can be seen that below $\mu_c$ links and plaquettes are hardly occupied, while above $\mu_c$ they are highly occupied. In that sense the Silverblaze transition shown in Fig.~\ref{occutrans_plaq} can be understood as condensation phenomenon, which is a new perspective on the underlying physics we gained from the dual reformulation of the problem.
435
436 \begin{figure}[h]
437 \centering
438 \hspace*{-3mm}
439 \includegraphics[width=130mm,clip]{pics/occutrans_plaq}
440 \caption{We here show the plaquette expectation value $\langle U \rangle$ and the corresponding suscpetibility $\chi_U$ as function of the chemical potential, for two different volumes $12^3\times60$ and $16^3\times60$.}
441 \label{occutrans_plaq}
442 \end{figure}
443 \begin{figure}[h]
444 \centering
445 \hspace*{-3mm}
446 \includegraphics[width=130mm,clip]{pics/occutrans}
447 \caption{Dual link occupation numbers $\bar{j}$, $\bar{l}$, $j$, $l$ and dual plaquette occupation numbers $p$ just below (top) and above (bottom) the transition from the confining- to the Higgs-phase shown in the previous plot.}
448 \label{occutrans}
449 \end{figure}
450
451 \section*{Acknowledgments} 
452 \vspace{-1mm}
453 \noindent
454 We thank Hans Gerd Evertz 
455 for numerous discussions that helped to shape this project and for 
456 providing us with the software to compute the autocorrelation times. 
457 This work was supported by the Austrian Science Fund, 
458 FWF, DK {\it Hadrons in Vacuum, Nuclei, and Stars} (FWF DK W1203-N16). Y.~Delgado is supported by
459 the Research Executive Agency (REA) of the European Union 
460 under Grant Agreement number PITN-GA-2009-238353 (ITN STRONGnet), HP2 and TRR 55.
461
462 \begin{thebibliography}{123456}
463 \bibitem{reviews}
464   P.~Petreczky,
465   %``Review of recent highlights in lattice calculations at finite temperature and finite density,''
466   PoS ConfinementX {\bf } (2012) 028
467   [arXiv:1301.6188 [hep-lat]].
468   %%CITATION = ARXIV:1301.6188;%%
469   %3 citations counted in INSPIRE as of 21 Oct 2013
470 %  
471   G.~Aarts,
472   %``Complex Langevin dynamics and other approaches at finite chemical potential,''
473   PoS LATTICE {\bf 2012} (2012) 017
474   [arXiv:1302.3028 [hep-lat]].
475   %%CITATION = ARXIV:1302.3028;%%
476   %3 citations counted in INSPIRE as of 08 Apr 2013
477   
478 \bibitem{solve-sign-problem}
479   D.~Sexty,
480   %``Simulating full QCD at nonzero density using the complex Langevin equation,''
481   arXiv:1307.7748 [hep-lat].
482   %%CITATION = ARXIV:1307.7748;%%
483   %4 citations counted in INSPIRE as of 21 Oct 2013
484 %
485   S.~Chandrasekharan,
486   %``Fermion Bag Approach to Fermion Sign Problems,''
487   Eur.\ Phys.\ J.\ A {\bf 49} (2013) 90
488   [arXiv:1304.4900 [hep-lat]].
489   %%CITATION = ARXIV:1304.4900;%%
490   %1 citations counted in INSPIRE as of 21 Oct 2013
491 %
492   G.~Aarts, P.~Giudice, E.~Seiler and E.~Seiler,
493   %``Localised distributions and criteria for correctness in complex Langevin dynamics,''
494   Annals Phys.\  {\bf 337} (2013) 238
495   [arXiv:1306.3075 [hep-lat]].
496   %%CITATION = ARXIV:1306.3075;%%
497   %4 citations counted in INSPIRE as of 21 Oct 2013
498 %
499   G.~Aarts, L.~Bongiovanni, E.~Seiler, D.~Sexty and I.~-O.~Stamatescu,
500   %``Controlling complex Langevin dynamics at finite density,''
501   Eur.\ Phys.\ J.\ A {\bf 49} (2013) 89
502   [arXiv:1303.6425 [hep-lat]].
503   %%CITATION = ARXIV:1303.6425;%%
504   %6 citations counted in INSPIRE as of 21 Oct 2013
505 %
506   M.~Cristoforetti, F.~Di Renzo, A.~Mukherjee and L.~Scorzato,
507   %``Monte Carlo simulations on the Lefschetz thimble: taming the sign problem,''
508   Phys.\ Rev.\ D {\bf 88} (2013) 051501
509   [arXiv:1303.7204 [hep-lat]].
510   %%CITATION = ARXIV:1303.7204;%%
511   %4 citations counted in INSPIRE as of 21 Oct 2013
512 %
513   J.~Bloch,
514   %``A subset solution to the sign problem in simulations at non-zero chemical potential,''
515   J.\ Phys.\ Conf.\ Ser.\  {\bf 432} (2013) 012023.
516   %%CITATION = 00462,432,012023;%%
517 %
518   M.~Fromm, J.~Langelage, S.~Lottini, O.~Philipsen,
519   %``The QCD deconfinement transition for heavy quarks and all baryon chemical potentials,''
520   JHEP {\bf 1201} (2012) 042.
521   %  [arXiv:1111.4953 [hep-lat]].
522   %%CITATION = ARXIV:1111.4953;%%
523 %  
524   M.~Fromm, J.~Langelage, S.~Lottini, M.~Neuman, O.~Philipsen,
525   %``The silver blaze property for QCD with heavy quarks from the lattice,''
526   Phys.\ Rev.\ Lett. 110 (2013) 122001.
527   %%CITATION = ARXIV:1207.3005;%%
528   
529   
530 \bibitem{dual}
531   A.~Patel, Nucl.~Phys. B {\bf 243} (1984) 411;
532   Phys.\ Lett.\  B {\bf 139} (1984) 394.
533   %
534   T.~DeGrand and C.~DeTar, 
535   Nucl.\ Phys.\  B {\bf 225} (1983) 590. 
536   %   
537   J.~Condella and C.~DeTar,
538   %``Potts flux tube model at nonzero chemical potential,''
539   Phys.\ Rev.\  D {\bf 61} (2000) 074023,
540   [arXiv:hep-lat/9910028].
541   %%CITATION = PHRVA,D61,074023;%%
542 %
543   C.~Gattringer and T.~Kloiber,
544   %``Spectroscopy in finite density lattice field theory: An exploratory study in the relativistic Bose gas,''
545   Phys.\ Lett.\ B {\bf 720} (2013) 210
546   [arXiv:1212.3770 [hep-lat]].
547   %%CITATION = ARXIV:1212.3770;%%
548   %2 citations counted in INSPIRE as of 21 Oct 2013
549 %
550   T.~Sterling, J.~Greensite,
551   %``Portraits Of The Flux Tube In Qed In Three-dimensions: A Monte Carlo Simulation With External Sources,''
552   Nucl.\ Phys.\ B {\bf 220} (1983) 327.
553   %%CITATION = NUPHA,B220,327;%%
554 %
555   M.~Panero,
556   %``A Numerical study of confinement in compact QED,''
557   JHEP {\bf 0505} (2005) 066.
558   %[hep-lat/0503024].
559   %%CITATION = HEP-LAT/0503024;%%
560 %
561   V.~Azcoiti, E.~Follana, A.~Vaquero, G.~Di Carlo,
562   %``Geometric Algorithm for Abelian-Gauge Models,''
563   JHEP {\bf 0908} (2009) 008.
564 %  [arXiv:0905.0639 [hep-lat]].
565   %%CITATION = ARXIV:0905.0639;%%
566 %
567   T.~Korzec, U.~Wolff,
568   %``A worm-inspired algorithm for the simulation of Abelian gauge theories,''
569   PoS LATTICE {\bf 2010} (2010) 029.
570   %[arXiv:1011.1359 [hep-lat]].
571   %%CITATION = ARXIV:1011.1359;%%
572 %
573   P.N.~Meisinger, M.C.~Ogilvie,
574   %``The Sign Problem, PT Symmetry and Abelian Lattice Duality,''
575   arXiv:1306.1495 [hep-lat].
576   %%CITATION = ARXIV:1306.1495;%%
577   
578 \bibitem{prl}
579   Y.~D.~Mercado, C.~Gattringer and A.~Schmidt,
580   %``Dual lattice simulation of the U(1) gauge-Higgs model at finite density - an exploratory proof-of-concept study,''
581   Phys.\ Rev.\ Lett.\  {\bf 111} (2013) 141601
582   [arXiv:1307.6120 [hep-lat]].
583   %%CITATION = ARXIV:1307.6120;%%
584   
585 \bibitem{z3}
586   C.~Gattringer and A.~Schmidt,
587   %``Gauge and matter fields as surfaces and loops - an exploratory lattice study of the Z(3) Gauge-Higgs model,''
588   Phys.\ Rev.\ D {\bf 86} (2012) 094506
589   [arXiv:1208.6472 [hep-lat]].
590   %%CITATION = ARXIV:1208.6472;%%
591   %8 citations counted in INSPIRE as of 21 Oct 2013
592   
593 \bibitem{swa}
594   Y.~D.~Mercado, C.~Gattringer and A.~Schmidt,
595   %``Surface worm algorithm for abelian Gauge-Higgs systems on the lattice,''
596   Comput.\ Phys.\ Commun.\  {\bf 184} (2013) 1535
597   [arXiv:1211.3436 [hep-lat]].
598   %%CITATION = ARXIV:1211.3436;%%
599   %6 citations counted in INSPIRE as of 21 Oct 2013
600
601 \bibitem{worm}
602   N.~Prokof'ev and B.~Svistunov,
603   %``Worm Algorithms for Classical Statistical Models,''
604   Phys.\ Rev.\ Lett.\  {\bf 87} (2001) 160601.
605   %%CITATION = PRLTA,87,160601;%%
606
607 \bibitem{LuWe}
608 M.~L\"uscher, P.~Weisz,  Nucl.\ Phys.\ B {\bf 290} (1987) 25;
609 Nucl.\ Phys.\ B {\bf 295} (1988) 65;
610 Nucl.\ Phys.\ B {\bf 318} (1989) 705.
611
612 \bibitem{DeGaSch1} 
613   Y.~D.~Mercado, C.~Gattringer, A.~Schmidt,
614   %``Surface worm algorithm for abelian Gauge-Higgs systems on the lattice,''
615   Comp.\ Phys.\ Comm.\  {\bf 184}, 1535 (2013).
616   %[arXiv:1211.3436 [hep-lat]].
617   %%CITATION = ARXIV:1211.3436;%%
618   %5 citations counted in INSPIRE as of 16 Jul 2013
619
620 \bibitem{Lang}
621  K.~Jansen, J.~Jersak, C.B.~Lang, T.~Neuhaus, G.~Vones,
622   %``Phase Structure Of Scalar Compact Qed,''
623   Nucl.\ Phys.\ B {\bf 265} (1986) 129;
624   %%CITATION = NUPHA,B265,129;%%
625   % K.~Jansen, J.~Jersak, C.~B.~Lang, T.~Neuhaus and G.~Vones,
626   %``Phase Structure Of U(1) Gauge - Higgs Theory On D = 4 Lattices,''
627   Phys.\ Lett.\ B {\bf 155} (1985) 268.
628   %%CITATION = PHLTA,B155,268;%%
629   K.~Sawamura, T.~Hiramatsu, K.~Ozaki, I.~Ichinose,
630   %``Four-dimensional CP1 + U(1) lattice gauge theory for 3D antiferromagnets: Phase structure, gauge bosons and spin liquid,''
631   arXiv:0711.0818 [cond-mat.str-el].
632   %%CITATION = ARXIV:0711.0818;%% 
633   
634 \bibitem{cohen}
635 T.D.~Cohen,
636   %``Functional integrals for QCD at nonzero chemical potential and zero density,''
637   Phys.\ Rev.\ Lett.\  {\bf 91} (2003) 222001.
638   %[hep-ph/0307089].
639   %%CITATION = HEP-PH/0307089;%%
640
641 \end{thebibliography}
642
643 \end{document}