Modified a little bit the text and the plots plaquettes.eps and segments.eps. The problem is that the blue and red links look the same in the printed version :-(. So I had to made the blue links fatter :-/
Also, I made the plots bigger since we have a couple of pages of extra space.
%!PS-Adobe-3.0 EPSF-3.0
%%Title: plaquettes.fig
%%Creator: fig2dev Version 3.2 Patchlevel 5d
-%%CreationDate: Tue Jul 9 14:10:29 2013
-%%BoundingBox: 0 0 719 108
+%%CreationDate: Thu Oct 24 13:01:56 2013
+%%BoundingBox: 0 0 721 108
%Magnification: 1.0000
%%EndComments
%%BeginProlog
/pageheader {
save
-newpath 0 108 moveto 0 0 lineto 719 0 lineto 719 108 lineto closepath clip newpath
+newpath 0 108 moveto 0 0 lineto 721 0 lineto 721 108 lineto closepath clip newpath
-26.3 486.9 translate
1 -1 scale
$F2psBegin
n 2025 7425 m
3075 6825 l gs col19 s gr
% Polyline
-n 3075 6825 m
- 4500 6825 l gs col19 s gr
-% Polyline
- [90] 0 sd
-n 3528 7429 m
- 4503 6829 l gs col19 s gr [] 0 sd
-% Polyline
-7.500 slw
-n 2325 7350 m 3075 6900 l 4275 6900 l 3525 7350 l
- cp gs col11 1.00 shd ef gr gs col0 s gr
-% Polyline
-30.000 slw
[120] 0 sd
n 3525 7425 m
2025 7425 l gs col19 s gr [] 0 sd
% Polyline
-7.500 slw
-gs clippath
-3345 6988 m 3345 7140 l 3405 7140 l 3405 6988 l 3405 6988 l 3375 7108 l 3345 6988 l cp
-eoclip
-n 3375 6600 m
- 3375 7125 l gs col0 s gr gr
-
-% arrowhead
-n 3345 6988 m 3375 7108 l 3405 6988 l col0 s
+n 6150 7425 m
+ 4650 7425 l gs col19 s gr
% Polyline
-30.000 slw
[120] 0 sd
-n 4650 7425 m
- 5700 6825 l gs col19 s gr [] 0 sd
+n 5700 6825 m
+ 7125 6825 l gs col19 s gr [] 0 sd
+% Polyline
+75.000 slw
+ [120] 0 sd
+n 9900 7425 m
+ 10950 6825 l gs col9 s gr [] 0 sd
% Polyline
7.500 slw
+n 6000 6450 m
+ 6150 6450 l gs col0 s gr
+% Polyline
+n 8625 6450 m
+ 8775 6450 l gs col0 s gr
+% Polyline
n 4950 7350 m 5700 6900 l 6900 6900 l 6150 7350 l
cp gs col11 1.00 shd ef gr gs col0 s gr
% Polyline
n 6153 7429 m
7128 6829 l gs col19 s gr
% Polyline
-n 6150 7425 m
- 4650 7425 l gs col19 s gr
+7.500 slw
+n 10200 7350 m 10950 6900 l 12150 6900 l 11400 7350 l
+ cp gs col11 1.00 shd ef gr gs col0 s gr
% Polyline
+75.000 slw
[120] 0 sd
-n 5700 6825 m
- 7125 6825 l gs col19 s gr [] 0 sd
-% Polyline
-n 8325 6825 m
- 9750 6825 l gs col9 s gr
-% Polyline
- [90] 0 sd
-n 8778 7429 m
- 9753 6829 l gs col9 s gr [] 0 sd
+n 10950 6825 m
+ 12375 6825 l gs col9 s gr [] 0 sd
% Polyline
7.500 slw
-n 7575 7350 m 8325 6900 l 9525 6900 l 8775 7350 l
+n 2325 7350 m 3075 6900 l 4275 6900 l 3525 7350 l
cp gs col11 1.00 shd ef gr gs col0 s gr
% Polyline
30.000 slw
- [120] 0 sd
-n 8775 7425 m
- 7275 7425 l gs col9 s gr [] 0 sd
+ [90] 0 sd
+n 3528 7429 m
+ 4503 6829 l gs col19 s gr [] 0 sd
+% Polyline
+n 3075 6825 m
+ 4500 6825 l gs col19 s gr
% Polyline
[120] 0 sd
-n 9900 7425 m
- 10950 6825 l gs col9 s gr [] 0 sd
+n 4650 7425 m
+ 5700 6825 l gs col19 s gr [] 0 sd
+% Polyline
+75.000 slw
+ [210] 0 sd
+n 7350 7425 m
+ 8775 7425 l gs col9 s gr [] 0 sd
% Polyline
7.500 slw
-n 10200 7350 m 10950 6900 l 12150 6900 l 11400 7350 l
+n 7575 7350 m 8325 6900 l 9525 6900 l 8775 7350 l
cp gs col11 1.00 shd ef gr gs col0 s gr
% Polyline
-30.000 slw
-n 11400 7425 m
- 9900 7425 l gs col9 s gr
+75.000 slw
+ [90] 0 sd
+n 8778 7429 m
+ 9753 6829 l gs col9 s gr [] 0 sd
% Polyline
- [120] 0 sd
-n 10950 6825 m
- 12375 6825 l gs col9 s gr [] 0 sd
+n 9975 7425 m 11400 7425 l
+ 12375 6825 l gs col9 s gr
+% Polyline
+n 7320 7440 m
+ 8370 6800 l gs col9 s gr
% Polyline
+n 8350 6810 m
+ 9760 6810 l gs col9 s gr
+/Symbol ff 283.33 scf sf
+1500 7275 m
+gs 1 -1 sc (n) col0 sh gr
+/Symbol ff 283.33 scf sf
+1650 8025 m
+gs 1 -1 sc (n) col0 sh gr
+/Symbol ff 200.00 scf sf
+1650 7350 m
+gs 1 -1 sc (2) col0 sh gr
+/Symbol ff 200.00 scf sf
+1800 8100 m
+gs 1 -1 sc (1) col0 sh gr
+/Times-Roman ff 233.33 scf sf
+3300 6525 m
+gs 1 -1 sc (+) col0 sh gr
+/Times-Roman ff 233.33 scf sf
+11175 6450 m
+gs 1 -1 sc (+) col0 sh gr
+% here ends figure;
+%
+% here starts figure with depth 46
+% Polyline
+0 slj
+0 slc
7.500 slw
gs clippath
-5970 6988 m 5970 7140 l 6030 7140 l 6030 6988 l 6030 6988 l 6000 7108 l 5970 6988 l cp
+3345 6988 m 3345 7140 l 3405 7140 l 3405 6988 l 3405 6988 l 3375 7108 l 3345 6988 l cp
eoclip
-n 6000 6600 m
- 6000 7125 l gs col0 s gr gr
+n 3375 6600 m
+ 3375 7125 l gs col0 s gr gr
% arrowhead
-n 5970 6988 m 6000 7108 l 6030 6988 l col0 s
+n 3345 6988 m 3375 7108 l 3405 6988 l col0 s
% Polyline
gs clippath
11220 6988 m 11220 7140 l 11280 7140 l 11280 6988 l 11280 6988 l 11250 7108 l 11220 6988 l cp
% arrowhead
n 11220 6988 m 11250 7108 l 11280 6988 l col0 s
% Polyline
-n 6000 6450 m
- 6150 6450 l gs col0 s gr
-% Polyline
gs clippath
8595 6988 m 8595 7140 l 8655 7140 l 8655 6988 l 8655 6988 l 8625 7108 l 8595 6988 l cp
eoclip
% arrowhead
n 8595 6988 m 8625 7108 l 8655 6988 l col0 s
+% here ends figure;
+%
+% here starts figure with depth 41
% Polyline
-n 8625 6450 m
- 8775 6450 l gs col0 s gr
-% Polyline
-30.000 slw
-n 7275 7425 m
- 8325 6825 l gs col9 s gr
-% Polyline
-n 11403 7429 m
- 12378 6829 l gs col9 s gr
-/Symbol ff 283.33 scf sf
-1500 7275 m
-gs 1 -1 sc (n) col0 sh gr
-/Symbol ff 283.33 scf sf
-1650 8025 m
-gs 1 -1 sc (n) col0 sh gr
-/Symbol ff 200.00 scf sf
-1650 7350 m
-gs 1 -1 sc (2) col0 sh gr
-/Symbol ff 200.00 scf sf
-1800 8100 m
-gs 1 -1 sc (1) col0 sh gr
-/Times-Roman ff 233.33 scf sf
-3300 6525 m
-gs 1 -1 sc (+) col0 sh gr
-/Times-Roman ff 233.33 scf sf
-11175 6450 m
-gs 1 -1 sc (+) col0 sh gr
+0 slj
+0 slc
+7.500 slw
+gs clippath
+5970 6988 m 5970 7140 l 6030 7140 l 6030 6988 l 6030 6988 l 6000 7108 l 5970 6988 l cp
+eoclip
+n 6000 6600 m
+ 6000 7125 l gs col0 s gr gr
+
+% arrowhead
+n 5970 6988 m 6000 7108 l 6030 6988 l col0 s
% here ends figure;
pagefooter
showpage
%!PS-Adobe-3.0 EPSF-3.0
%%Title: plaquettes.fig
%%Creator: fig2dev Version 3.2 Patchlevel 5d
-%%CreationDate: Wed Oct 23 10:16:57 2013
-%%BoundingBox: 0 0 719 108
+%%CreationDate: Thu Oct 24 12:48:12 2013
+%%BoundingBox: 0 0 721 108
%Magnification: 1.0000
%%EndComments
%%BeginProlog
/pageheader {
save
-newpath 0 108 moveto 0 0 lineto 719 0 lineto 719 108 lineto closepath clip newpath
+newpath 0 108 moveto 0 0 lineto 721 0 lineto 721 108 lineto closepath clip newpath
-26.3 486.9 translate
1 -1 scale
$F2psBegin
n 5700 6825 m
7125 6825 l gs col19 s gr [] 0 sd
% Polyline
+75.000 slw
n 8325 6825 m
9750 6825 l gs col9 s gr
% Polyline
10950 6825 l gs col-1 s gr [] 0 sd
% Polyline
7.500 slw
-n 10200 7350 m 10950 6900 l 12150 6900 l 11400 7350 l
- cp gs col11 1.00 shd ef gr gs col0 s gr
-% Polyline
-30.000 slw
-n 11400 7425 m
- 9900 7425 l gs col9 s gr
-% Polyline
- [120] 0 sd
-n 10950 6825 m
- 12375 6825 l gs col9 s gr [] 0 sd
-% Polyline
-7.500 slw
-gs clippath
-11220 6988 m 11220 7140 l 11280 7140 l 11280 6988 l 11280 6988 l 11250 7108 l 11220 6988 l cp
-eoclip
-n 11250 6600 m
- 11250 7125 l gs col0 s gr gr
-
-% arrowhead
-n 11220 6988 m 11250 7108 l 11280 6988 l col0 s
-% Polyline
n 6000 6450 m
6150 6450 l gs col0 s gr
% Polyline
[15 90] 90 sd
n 7275 7425 m
8325 6825 l gs col-1 s gr [] 0 sd
+% Polyline
+7.500 slw
+n 10200 7350 m 10950 6900 l 12150 6900 l 11400 7350 l
+ cp gs col11 1.00 shd ef gr gs col0 s gr
+% Polyline
+75.000 slw
+n 11400 7425 m
+ 9900 7425 l gs col9 s gr
+% Polyline
+ [120] 0 sd
+n 10950 6825 m
+ 12375 6825 l gs col9 s gr [] 0 sd
/Symbol ff 283.33 scf sf
1500 7275 m
gs 1 -1 sc (n) col0 sh gr
gs 1 -1 sc (+) col0 sh gr
% here ends figure;
%
-% here starts figure with depth 45
+% here starts figure with depth 46
% Polyline
0 slj
0 slc
7.500 slw
gs clippath
+11220 6988 m 11220 7140 l 11280 7140 l 11280 6988 l 11280 6988 l 11250 7108 l 11220 6988 l cp
+eoclip
+n 11250 6600 m
+ 11250 7125 l gs col0 s gr gr
+
+% arrowhead
+n 11220 6988 m 11250 7108 l 11280 6988 l col0 s
+% Polyline
+gs clippath
5970 6988 m 5970 7140 l 6030 7140 l 6030 6988 l 6030 6988 l 6000 7108 l 5970 6988 l cp
eoclip
n 6000 6600 m
$p_{x,\nu\rho}$ and
the link fluxes (either $l_{x,\sigma}$ or $j_{x,\sigma}$) at the edges of $p_{x,\nu\rho}$ by $\pm 1$ as
illustrated in Fig.~\ref{plaquette}. The change of $p_{x, \nu \rho}$
-by $\pm 1$ is indicated by the signs $+$ or $-$, while the flux variables $l$($j$) are denoted by the red(blue) lines
+by $\pm 1$ is indicated by the signs $+$ or $-$, while the flux variables $l$($j$) are denoted by the thin red line
+(fat blue lines)
and we use a dashed line to indicate a decrease by $-1$ and a full line for an increase by $+1$.
%
\vspace*{-1mm}
\end{center}
\vspace{-4mm}
\caption{Plaquette update: A plaquette occupation number is changed by $+1$ or
-$-1$ and the links $l$ (red) or $j$ (blue) of the plaquette are changed simultaneously. The
+$-1$ and the links $l$ (thin red links) or $j$ (fat blue links) of the plaquette are changed simultaneously. The
full line indicates an increase by +1 and a dashed line a decrease by $-1$.
The directions $1 \le \nu_1 < \nu_2 \le 4$
indicate the plane of the plaquette.} \label{plaquette}
\subsection{Algorithm assessment}
\noindent
For the comparison of both algorithms we considered the U(1) gauge-Higgs model coupled
-with two (as described above) and with only one scalar field \cite{swa}.
+with one (see \cite{swa}) and two scalar fields (as described here).
First we checked the correctness of the SWA comparing the results for different
lattices sizes and parameters. Examples for the one flavor model are shown in \cite{swa}.
-Fig.~\ref{obs} shows two observables for the two flavor case.
+In Fig.~\ref{obs} we can observe some examples for the two flavor case.
The figure on the top shows
$\langle |\phi|^2 \rangle$ (lhs.) and its susceptibility (rhs.) as a function of $\mu$
at $\beta = 0.85$ and $M^2 = 5.325$ on a lattice of size $12^3 \times 60$. This point is located
\hbox{\hspace{4mm}\includegraphics[width=0.97\textwidth,clip]{pics/bn}}
\end{center}
\vspace{-6mm}
-\caption{Observables as a function of $\mu$ for different parameters on a $12^3 \times 60$ lattice.
+\caption{Observables for the two flavor model as a function of $\mu$ for different
+parameters on a $12^3 \times 60$ lattice.
We compare results from the SWA (circles) and the LMA (triangles).} \label{obs}
\vspace*{-2mm}
\end{figure}
\end{center}
\vspace{-4mm}
\caption{Normalized autocorrelation times $\overline{\tau}$ for 2 different set
-of parameters. Left: parameters close to a first order phase transition.
+of parameters for the one flavor model. Left: parameters close to a first order phase transition.
Right: low acceptance rate of the variable $l$. Both simulations correspond
to a $16^4$ lattice. Data taken from \cite{swa}.} \label{auto}
\vspace*{-2mm}
\begin{figure}[h]
\centering
\hspace*{-3mm}
-\includegraphics[width=75mm,clip]{pics/phasediagram}
+\includegraphics[width=85mm,clip]{pics/phasediagram}
\caption{Phase diagram in the $\beta$-$M^2$ plane at $\mu = 0$. We show
the phase boundaries determined from the maxima of the susceptibilities $\chi_U$ and $\chi_{\phi}$ and the
inflection points of $\chi_n$.}
\begin{figure}[h]
\centering
\hspace*{-3mm}
-\includegraphics[width=130mm,clip]{pics/muphases}
+\includegraphics[width=\linewidth,clip]{pics/muphases}
\caption{We show the observables $\langle U \rangle$, $\langle |\phi|^2 \rangle$, $\langle n \rangle$ as function of $\beta$ and $M^2$ for different $\mu = 0,0.5,1,1.5$. It can be seen how the phase boundaries change with increasing chemical potential.}
\label{muphases}
\end{figure}
$\langle U \rangle$ and $\chi_U$ are independent of $\mu$, which is characteristic for a Silverblaze type transition \cite{cohen}.
\noindent
-Then in Fig.~\ref{occutrans} we show the occupation numbers of all dual link variables $\bar{j}$, $\bar{l}$, $j$, $l$ and dual plaquette variables $p$ just below (top) and above (bottom) the critical chemical potential $\mu_c$. Here blue links/plaquettes depict positive occupation numbers, green links/plaquettes depict negative occupation numbers and links/plaquettes with $0$-occupation are spared out. It can be seen that below $\mu_c$ links and plaquettes are hardly occupied, while above $\mu_c$ they are highly occupied. In that sense the Silverblaze transition shown in Fig.~\ref{occutrans_plaq} can be understood as condensation phenomenon, which is a new perspective on the underlying physics we gained from the dual reformulation of the problem.
+Then in Fig.~\ref{occutrans} we show the occupation numbers of all dual link variables $\bar{j}$, $\bar{l}$, $j$,
+$l$ and dual plaquette variables $p$ just below (top) and above (bottom) the critical chemical potential $\mu_c$. Here blue links/plaquettes depict positive occupation numbers, green links/plaquettes depict negative occupation numbers and links/plaquettes with $0$-occupation are spared out. It can be seen that below $\mu_c$ links and plaquettes are hardly occupied, while above $\mu_c$ they are highly occupied. In that sense the Silverblaze transition shown in Fig.~\ref{occutrans_plaq} can be understood as condensation phenomenon, which is a new perspective on the underlying physics we gained from the dual reformulation of the problem.
\begin{figure}[h]
\centering
\hspace*{-3mm}
-\includegraphics[width=130mm,clip]{pics/occutrans_plaq}
+\includegraphics[width=\linewidth,clip]{pics/occutrans_plaq}
\caption{We here show the plaquette expectation value $\langle U \rangle$ and the corresponding suscpetibility $\chi_U$ as function of the chemical potential, for two different volumes $12^3\times60$ and $16^3\times60$.}
\label{occutrans_plaq}
\end{figure}
\begin{figure}[h]
\centering
\hspace*{-3mm}
-\includegraphics[width=130mm,clip]{pics/occutrans}
+\includegraphics[width=\linewidth,clip]{pics/occutrans}
\caption{Dual link occupation numbers $\bar{j}$, $\bar{l}$, $j$, $l$ and dual plaquette occupation numbers $p$ just below (top) and above (bottom) the transition from the confining- to the Higgs-phase shown in the previous plot.}
\label{occutrans}
\end{figure}