+\noindent
+One of the main results of these studies so far and already published in \cite{prl} is the full phase diagram of the considered model in the $\beta$-$M^2$ plane at $\mu=0$ and some selected chemical potential driven phase transitions of the measured observables. For the sake of completeness we here again want to show the obtained phase diagram, but as a proceedings-extra also present some plots which show the shifting of the phase-boundaries at $\mu \neq 0$ and measurements of the dual occupation numbers.
+
+\subsection{Phase-diagram at $\mu=0$}
+\noindent
+We studied the different transition lines in Fig.~\ref{phasediagram} using finite size analysis of the measured observables $\langle U \rangle$ and $\langle |\phi|^2 \rangle$ and the corresponding susceptibilities, finding that the phase boundary separating Higgs- and
+confining phase is strong first order, the line separating confining- and Coulomb phase is of weak
+first order, and the boundary between Coulomb- and Higgs phase is a continuous transition.
+Our results for the $\mu = 0$ phase diagram are in qualitative
+agreement with the conventional results for related
+models \cite{Lang}.
+\begin{figure}[h]
+\centering
+\hspace*{-3mm}
+\includegraphics[width=75mm,clip]{pics/phasediagram}
+\caption{Phase diagram in the $\beta$-$M^2$ plane at $\mu = 0$. We show
+the phase boundaries determined from the maxima of the susceptibilities $\chi_U$ and $\chi_{\phi}$ and the
+inflection points of $\chi_n$.}
+\label{phasediagram}
+\end{figure}
+
+\subsection{Phase-boundaries at $\mu \neq 0$}
+\noindent
+In Fig.~\ref{muphases} we plot the observables $\langle U \rangle$, $\langle |\phi|^2 \rangle$, $\langle n \rangle$ as function of $\beta$ and $M^2$ for four different values of the chemical potential $\mu=0,0.5,1,1.5$.
+
+\noindent
+The phase-transition from the confining phase to the Coulomb phase shown in Fig.~\ref{phasediagram} is characterized by $\langle U \rangle$ growing larger across the transition but no significant changes in the other observables, which is the reason why the confinement-Coulomb transition can only be seen in the $\langle U \rangle$-plots.
+For all observables it can be seen that the phase-boundaries in general become more pronounced at higher chemical potential and for the Higgs-Coulomb transition the transition type may even change from crossover to first order. Still, the shown results have to be considered preliminary and more detailed studies will be necessary to draw final conclusions.
+\begin{figure}[h]
+\centering
+\hspace*{-3mm}
+\includegraphics[width=130mm,clip]{pics/muphases}
+\caption{We show the observables $\langle U \rangle$, $\langle |\phi|^2 \rangle$, $\langle n \rangle$ as function of $\beta$ and $M^2$ for different $\mu = 0,0.5,1,1.5$. It can be seen how the phase boundaries change with increasing chemical potential.}
+\label{muphases}
+\end{figure}