]> git.treefish.org Git - shutbox.git/blob - src/qtable.py
updating qtable
[shutbox.git] / src / qtable.py
1 #!/usr/bin/env python3
2
3 import numpy as np
4 import random
5 import sys
6
7 from game import Game
8
9 learning_rate = 0.1
10 discount_factor = 1.0
11
12 states_dim = 147456 # 2^12 * 6^2
13 actions_dim = 637 # 12+1 * (6+1)^2
14 num_episodes = 10000000000
15
16 def find_state_qid(shutable, diced):
17     qid = 0
18     for rod in shutable:
19         qid += pow(2, rod-1)
20     for i in range(len(diced)):
21         qid += (diced[i]-1) * pow(6, i) * pow(2, 12)
22     return qid
23
24 def find_option_qid(option):
25     qid = 0
26     for i in range(len(option)):
27         qid += option[i] * pow(7, i) * pow(13, len(option)-1)
28     return qid
29
30 def select_option(opts, qs):
31     opt_qid_pairs = []
32     opt_qsum = 0.0
33     for opt in opts:
34         opt_qid = find_option_qid(opt)
35         opt_qid_pairs.append( [opt, opt_qid] )
36         opt_qsum += qs[opt_qid]
37     random.shuffle(opt_qid_pairs)
38     ran_pt = random.uniform(0.0, opt_qsum)
39     decision_pt = 0.0
40     for opt_qid_pair in opt_qid_pairs:
41         decision_pt += qs[ opt_qid_pair[1] ]
42         if ran_pt <= decision_pt:
43             return (opt_qid_pair[0], opt_qid_pair[1])
44     return (None, None)
45
46 Q = np.ones([states_dim, actions_dim])
47
48 running_score = [0.0, 0.0]
49
50 for i in range(num_episodes):
51     g = Game()
52     g.dice()
53     state_qid = find_state_qid(g.get_shutable(), g.get_diced())
54     while not g.is_over():
55         opt, opt_qid = select_option( g.get_options(), Q[state_qid, :] )
56         if opt:
57             old_score = g.get_score()
58             g.shut(opt)
59             g.dice()
60             reward = (g.get_score() - old_score) / 12.0
61             new_state_qid = find_state_qid(g.get_shutable(), g.get_diced())
62             Q[state_qid, opt_qid] += \
63                 learning_rate * (reward
64                                  + discount_factor * np.max(Q[new_state_qid, :])
65                                  - Q[state_qid, opt_qid])
66             state_qid = new_state_qid
67         else:
68             Q[state_qid, opt_qid] = 0
69     running_score[0] *= 0.99999999
70     running_score[0] += g.get_score()
71     running_score[1] *= 0.99999999
72     running_score[1] += 1.0
73     print( "%d: %f" % (i, running_score[0]/running_score[1]) )