]> git.treefish.org Git - shutbox.git/blob - src/qtable.py
refactoring
[shutbox.git] / src / qtable.py
1 #!/usr/bin/env python3
2
3 import numpy as np
4 import random
5 import sys
6
7 from game import Game
8
9 learning_rate = 0.001
10 discount_factor = 1.0
11
12 states_dim = 36864 # 2^10 * 6^2
13 actions_dim = 539 # 10+1 * (6+1)^2
14 num_episodes = 10000000000
15
16 def find_state_qid(shutable, diced):
17     qid = 0
18     for rod in shutable:
19         qid += pow(2, rod-1)
20     for i in range(len(diced)):
21         qid += (diced[i]-1) * pow(6, i) * pow(2, 10)
22     return qid
23
24 def find_option_qid(option):
25     qid = 0
26     for i in range(len(option)):
27         qid += option[i] * pow(7, i) * pow(11, len(option)-1)
28     return qid
29
30 def select_option(opts, qs):
31     opt_qid_pairs = []
32     opt_qsum = 0.0
33     for opt in opts:
34         opt_qid = find_option_qid(opt)
35         opt_qid_pairs.append( [opt, opt_qid] )
36         opt_qsum += qs[opt_qid]
37     ran_pt = random.uniform(0.0, opt_qsum)
38     decision_pt = 0.0
39     for opt_qid_pair in opt_qid_pairs:
40         decision_pt += qs[ opt_qid_pair[1] ]
41         if ran_pt <= decision_pt:
42             return (opt_qid_pair[0], opt_qid_pair[1])
43
44 Q = np.ones([states_dim, actions_dim])
45
46 running_score = [0.0, 0.0]
47
48 for i in range(num_episodes):
49     g = Game()
50     g.dice()
51     state_qid = find_state_qid(g.get_shutable(), g.get_diced())
52     while not g.is_over():
53         options = g.get_options()
54         if len(options) > 0:
55             opt, opt_qid = select_option( options, Q[state_qid, :] )
56             old_score = g.get_score()
57             g.shut(opt)
58             g.dice()
59             reward = g.get_score() - old_score
60             new_state_qid = find_state_qid(g.get_shutable(), g.get_diced())
61             Q[state_qid, opt_qid] += \
62                 learning_rate * (reward
63                                  + discount_factor * np.max(Q[new_state_qid, :])
64                                  - Q[state_qid, opt_qid])
65             state_qid = new_state_qid
66     Q[state_qid, :] = 0.0
67     running_score[0] *= 0.99999999
68     running_score[0] += g.get_score()
69     running_score[1] *= 0.99999999
70     running_score[1] += 1.0
71     print( "%d: %f" % (i, running_score[0]/running_score[1]) )