]> git.treefish.org Git - phys/poster_lattice14.git/blob - poster_lattice14.tex
almost done.
[phys/poster_lattice14.git] / poster_lattice14.tex
1
2 \documentclass[portrait,a0]{a0poster}
3 %
4 \usepackage{etex}
5
6 \usepackage[svgnames]{xcolor}
7
8 \usepackage{color,colortbl,times,graphicx,multicol}
9 \usepackage{psboxit,epsfig,wrapfig,boxedminipage}
10 \usepackage[absolute]{textpos}
11 \usepackage{subfigure}
12 \usepackage{tikz,slashed}
13 \usepackage{enumitem}
14 \usepackage{multirow}
15 \usepackage{caption}
16 \renewcommand{\familydefault}{\sfdefault}
17
18 \usepackage{amsfonts}
19
20 \color{black}
21
22 %some mathpackages
23 \usepackage[intlimits]{amsmath}
24 \usepackage{amssymb}
25 % \usepackage{bbm}
26 \usepackage{mathrsfs}
27 % \usepackage{dsfont}
28 %allg. Symbole
29 \usepackage{wasysym}
30 %float figures
31 \usepackage{wrapfig}
32 \usepackage{url}
33 \usepackage[tight]{units}
34 \usepackage{ctable}
35
36 %\setlength{\textheight}{110.32cm}
37 \setlength{\textheight}{116.32cm}
38 \setlength{\textwidth}{76.96cm}
39 \setlength{\voffset}{-20mm}
40 \setlength{\hoffset}{-40mm}
41 %\setlength{\oddsidemargin}{5cm}
42 \setlength{\oddsidemargin}{5.5cm}
43
44 \setlength{\parindent}{0cm}
45
46 \newlength{\agrheight}
47 \newlength{\agrdoubleheight}
48 \setlength{\agrheight}{11cm}
49 \setlength{\agrdoubleheight}{18cm}
50
51 \newlength{\nontextsep}
52 \setlength{\nontextsep}{1cm}
53 \newlength{\agrsep}
54 \setlength{\agrsep}{2cm}
55 \newlength{\agrdoublesep}
56 \setlength{\agrdoublesep}{2cm}
57
58 % separation between columns
59 \setlength{\columnsep}{1.5cm}
60
61
62 % user defined commands
63 % own commands
64 \newcommand{\eq}[1]{(\ref{#1})}
65 \newcommand{\fig}[1]{Fig.~{\ref{#1}}}
66 \newcommand{\FC}{\;,}
67 \newcommand{\FD}{\;.}
68 \newcommand{\RD}[1]{{\mathrm{red}(#1)}}
69 \newcommand{\RDH}[1]{{\mathrm{red5}(#1)}}
70 \newcommand{\LM}[1]{{\mathrm{lm}(#1)}}
71 \newcommand{\LMH}[1]{{\mathrm{lm5}(#1)}}
72 \newcommand{\SU}[1]{\mathrm{SU}(#1)}
73 \newcommand{\U}[1]{\mathrm{U}(#1)}
74 \newcommand{\dbar}{\overline{d}}
75 \newcommand{\ubar}{\overline{u}}
76
77 \definecolor{WildStrawberry}{cmyk}{0,0.96,0.39,0} % important phrases
78 \definecolor{CornflowerBlue}{cmyk}{0.65,0.13,0,0.4} % accentuation2
79 \definecolor{CornflowerBlueDark}{cmyk}{0.65,0.13,0,0.6} % structure
80 \definecolor{CadetBlue}{cmyk}{0.62,0.57,0.23,0} % gluons
81 \definecolor{Peach}{cmyk}{0,0.70,0.70,0.35} % ghosts
82 \definecolor{BurntOrange}{cmyk}{0,0.51,1,0} % gh-g vertices
83 \definecolor{Red}{cmyk}{0,1,1,0} % integral measure
84 \definecolor{SkyBlue}{cmyk}{0.62,0,0.12,0.3} % IR exponent
85
86 \definecolor{kfug-yellow}{rgb}{1 0.85 0}
87
88 \definecolor{Blue}{cmyk}{1,1,0,0} 
89 \definecolor{Red}{cmyk}{0,1,1,0} 
90
91 \renewcommand{\refname}{\vspace{-1.5cm}}
92
93 \renewcommand\footnoterule{}
94 \renewcommand{\thefootnote}{\fnsymbol{footnote}}
95
96 %\usepackage{showframe}
97
98 \setlength{\parindent}{0em}             % Absatzeinrueckung erste Zeile
99 \setlength{\parskip}{0em}                       % Absatzzwischenraum
100
101 \renewcommand{\baselinestretch}{1.1}
102
103
104
105
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 %%%%%%%%%%%%%%%%%%%%%%% document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
109
110 \begin{document}
111
112
113 \noindent
114 \hspace*{-36mm}
115 \includegraphics[scale=1.01,clip]{./hintergrund}
116
117
118 \vspace*{-1140mm}
119
120 \vspace{-45mm}
121 % \hfill \includegraphics[width=.1\textwidth]{../../figures/oeaw_logo}
122 \hfill 
123 \includegraphics[width=.2\textwidth]{./fwf-logo}
124 \hspace{-30mm}
125 %\vspace{-40mm}
126
127 %% Titel
128 \vspace*{10mm}
129 \begin{center}
130 \fcolorbox{white}{white}
131 {
132   \begin{minipage}[b]{400mm}
133     \begin{center}
134       \vspace*{10mm}
135        \Huge{\sf
136         \textcolor{cyan}{\bf Condensation in two flavor scalar electrodynamics with non-degenerate quark masses}}\\[7mm]
137         \Large{\bf{Alexander Schmidt} \sf{, Philippe de Forcrand, Christof Gattringer} \\ \sf{\large University of Graz}}\\\vspace{-1cm}
138     \end{center}
139    \vspace*{1cm}
140   \end{minipage}
141 }
142 \end{center}
143
144
145 \vspace{1.5cm}
146
147 %%%%%%%%%%%%%%%%%%%%%%% 2 columns %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
148 \begin{multicols}{2}
149
150
151 %%%%%%%%%%%%%%%%%%%%%%% ACTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
152 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
153
154 \large \centering{\textcolor{cyan}{\LARGE\sf The action}}
155
156 \vspace{1.0cm}
157
158 \begin{minipage}[b]{350mm}
159
160   In the conventional notation the lattice action is given by (the lattice constant is set to $a=1$)
161
162   \vspace{1cm}
163
164   \begin{flushleft}
165     \small
166     {\color{cyan}Gauge field $U_{\vec{n},\mu}$} \quad 
167     {\color{magenta}1st flavor Higgs field $\phi_{\vec{n}}^1$} \quad
168     {\color{ForestGreen}2nd flavor Higgs field $\phi_{\vec{n}}^2$}
169   \end{flushleft}
170   \begin{eqnarray}
171     S \hspace{0.1cm} & = & S_G[U] + S_H[U,\phi] \label{latac} \\ \nonumber \\
172     S_G & = & -  \beta \sum_{\vec{n}} \sum_{\mu < \nu}  Re \; {\color{cyan}U_{\vec{n},\mu} \, U_{\vec{n} + \hat{\mu}, \nu} \, U_{\vec{n} + \hat{\nu}, \mu}^\star \, U_{\vec{n},\nu}^\star} 
173     \\
174     S_{H} & = & \sum_{\vec{n}}\! \Bigg[ \kappa^1 \mid \!\! {\color{magenta}\phi^1_{\vec{n}}} \!\! \mid^2
175     + \lambda^1 \mid \!\! {\color{magenta}\phi^1_{\vec{n}}} \!\! \mid^4  
176     + \kappa^2 \mid \!\! {\color{ForestGreen}\phi^2_{\vec{n}}} \!\! \mid^2
177     + \lambda^2 \mid \!\! {\color{ForestGreen}\phi^2_{\vec{n}}} \!\! \mid^4 \Bigg ] \ \\
178     &-& \sum_{\vec{n}}\! \Bigg[ \sum_{\mu}\! \Bigg( e^{\delta_{\mu 4} \mu^1}{\color{magenta}{\phi^1_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n},\mu}} \,  {\color{magenta}\phi^1_{\vec{n}+\widehat{\mu}}}   
179     + e^{-\delta_{\mu 4} \mu^1} {\color{magenta}{\phi^1_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n} - \widehat{\mu},\mu}^\star} \,  {\color{magenta}\phi^1_{\vec{n}-\widehat{\mu}}} \Bigg) \Bigg] \nonumber \\
180     &-& \sum_{\vec{n}}\! \Bigg[ \sum_{\mu}\! \Bigg( e^{\delta_{\mu 4} \mu^2}{\color{ForestGreen}{\phi^2_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n},\mu}^\star} \,  {\color{ForestGreen}\phi^2_{\vec{n}+\widehat{\mu}}}   
181     + e^{-\delta_{\mu 4} \mu^2} {\color{ForestGreen}{\phi^2_{\vec{n}}}^\star} \, {\color{cyan}U_{\vec{n} - \widehat{\mu},\mu}} \,  {\color{ForestGreen}\phi^2_{\vec{n}-\widehat{\mu}}} \Bigg) \Bigg]
182     \nonumber
183   \end{eqnarray}
184   \begin{flushright}
185     \small
186     {\color{gray}$U_{\vec{n},\mu} \in U(1)$, $\phi_{\vec{n}} \in \mathbb{C}$}
187   \end{flushright}
188
189
190   \vspace{0.2cm}
191
192   \vspace{0.2cm}
193
194   with $\beta$ the inverse gauge coupling, $\kappa^i$ the effective masses and $\lambda^i$ the Higgs coupling constants.
195
196   \vspace{-24pt}
197 \end{minipage}
198 \vspace{2.0cm}
199
200
201 %%%%%%%%%%%%%%%%%%%%%%% FLUX ACTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
202 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
203
204 \large \centering{\textcolor{cyan}{\LARGE\sf Flux representation of the action}}
205
206 \vspace{1.0cm}
207
208 \begin{minipage}[b]{350mm}
209
210   {\textcolor{cyan}{\Large\sf The basic idea}} 
211   is to expand the partition sum and perform the summation over the original degrees of freedom.
212
213   \vspace{0.5cm}
214
215   {\textcolor{cyan}{\Large\sf As an example}} 
216   we look at a single nearest neighbour term
217   \begin{eqnarray}
218     Z \; \propto \; e^{\phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}}}
219     \; = \; \sum_{k_{x,\mu}}    \frac{1}{ (k_{x,\mu})!} \; 
220     \bigg[ \, \phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}} \bigg]^{\, k_{x,\mu}} \quad .
221     \nonumber
222   \end{eqnarray}
223
224   Performing the summation over $\phi^i$ our partition sum no longer depends on the fields $\phi^i$
225   \begin{eqnarray*}
226     Z \; = \; \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)-S_H(U,\phi)} &=& \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)} \sum_{\{k,l\}} F(U,\phi,k,l) \\
227     &=& \sum_{\{k,l\}} \sum_{\{U\}} \; e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\textnormal{perform this summation}} \quad .
228   \end{eqnarray*}
229
230   {\textcolor{cyan}{\Large\sf Finally}}
231   we end up with a real and positive partition sum plus constraints for the dual degrees of freedom
232   \begin{eqnarray*}
233     Z \; = \; \sum_{\{k,l\}} \sum_{\{p\}} FB(k,l,p) = \hspace{-0.5cm} \sum_{\{p, k^1, l^1, k^2, l^2\}} \hspace{-0.5cm} {\cal W}(p,k,l) \, {\cal C}_B(p,k^1,k^2) \, {\cal C}_F(k^i) \quad .
234   \end{eqnarray*}
235
236   \vspace{0.2cm}
237
238   %\begin{center}
239     %\includegraphics[height=13cm]{dofs.pdf}
240   %\end{center}
241
242   \vspace{-24pt}
243 \end{minipage}
244 \vspace{2.0cm}
245
246
247 %%%%%%%%%%%%%%%%%%%%%%% PHASE DIAGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
248 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
249
250 \large \centering{\textcolor{cyan}{\LARGE\sf Phase diagram}}
251
252 \vspace{1.0cm}
253
254 \begin{minipage}[b]{350mm}
255
256   \begin{center}
257     \includegraphics[height=25cm]{phasediagram.pdf}
258     \cite{PhysRevLett.111.141601}
259   \end{center}
260
261   \vspace{-24pt}
262 \end{minipage}
263 \vspace{2.0cm}
264
265 %%%%%%%%%%%%%%%%%%%%%%% MASS CORRELATORS %%%%%%%%%%%%%%%%%%%%%%%%%%%
266 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
267
268 \large \centering{\textcolor{cyan}{\LARGE\sf Mass correlators in the confined phase}}
269
270 \vspace{1.0cm}
271
272 \begin{minipage}[b]{350mm}
273
274   For the fundamental correlators $F_1$ and $F_2$, as expected, we see no plateaus. The masses of the bound states $U_1$ and $U_2$ are split because we set the effective masses of the two flavours to different values.
275
276   \begin{center}
277     \includegraphics[height=28cm]{mass.pdf}
278   \end{center}
279
280   \vspace{-24pt}
281 \end{minipage}
282 \vspace{2.0cm}
283
284 %%%%%%%%%%%%%%%%%%%%%%% CONDENSATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
285 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
286
287 \large \centering{\textcolor{cyan}{\LARGE\sf Condensation}}
288
289 \vspace{1.0cm}
290
291 \begin{minipage}[b]{350mm}
292
293   We here show different observables as function of $\mu$. The dotted lines show the masses $U_1$ and $U_1$ determined from the plots above.
294
295   \begin{center}
296     \includegraphics[height=35cm]{finmu_840.pdf}
297   \end{center}
298
299   \vspace{-24pt}
300 \end{minipage}
301 \vspace{2.0cm}
302
303 %%%%%%%%%%%%%%%%%%%%%%%%%% Acknowledgments %%%%%%%%%%%%%%%%%%%%%%%%%%%%
304
305 \hrule
306 \vspace{1.0cm}
307 \large \centering{\textcolor{cyan}{\Large\sf Acknowledgments}}
308
309 \vspace{1.0cm}
310
311 \begin{minipage}[b]{350mm}
312 This work was supported by the Austrian Science Fund, FWF, through the Doctoral
313 Program on {\it Hadrons in Vacuum, Nuclei, and Stars} (FWF DK W1203-N16).
314 \end{minipage}
315
316 %%%%%%%%%%%%%%%%%%%%%%%%%% References %%%%%%%%%%%%%%%%%%%%%%%%%%%%
317
318 %\hrule
319 \vspace{1.7cm}
320 \large \centering{\textcolor{cyan}{\Large\sf References}}
321
322 \vspace{-1.0cm}
323
324 \begin{minipage}[b]{350mm}
325     %\begin{multicols}{2}
326
327       % \hrulefill
328       \vspace{-8cm}
329       \footnotesize
330       \bibliographystyle{plain}
331       \bibliography{bib}
332       \vspace{-3cm}
333
334     %\end{multicols}\vspace{-24pt}
335   \end{minipage}
336
337 \end{multicols}
338 \end{document}