\begin{minipage}[b]{350mm}
{\textcolor{cyan}{\Large\sf The basic idea}}
- is to expand the partition sum and perform the summation over the original degrees of freedom.
+ is to expand the partition sum and perform the integral over the original degrees of freedom.
\vspace{0.5cm}
Z \; \propto \; e^{\phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}}}
\; = \; \sum_{k_{x,\mu}} \frac{1}{ (k_{x,\mu})!} \;
\bigg[ \, \phi_x^\star \, U_{x,\nu} \,\phi_{x+\widehat{\nu}} \bigg]^{\, k_{x,\mu}} \quad .
- \nonumber
\end{eqnarray}
- Performing the summation over $\phi^i$ our partition sum no longer depends on the fields $\phi^i$
- \begin{eqnarray*}
+ Performing the integral over $\phi^i$ our partition sum no longer depends on the fields $\phi^i$
+ \begin{eqnarray}
Z \; = \; \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)-S_H(U,\phi)} &=& \sum_{\{\phi\}} \sum_{\{U\}} \; e^{-S_G(U)} \sum_{\{k,l\}} F(U,\phi,k,l) \\
- &=& \sum_{\{k,l\}} \sum_{\{U\}} \; e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\textnormal{perform this summation}} \quad .
- \end{eqnarray*}
+ &=& \sum_{\{k,l\}} \sum_{\{U\}} \; e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\textnormal{perform this integral}} \nonumber \quad .
+ \end{eqnarray}
{\textcolor{cyan}{\Large\sf Finally}}
we end up with a real and positive partition sum plus constraints for the dual degrees of freedom
- \begin{eqnarray*}
+ \begin{eqnarray}
Z \; = \; \sum_{\{k,l\}} \sum_{\{p\}} FB(k,l,p) = \hspace{-0.5cm} \sum_{\{p, k^1, l^1, k^2, l^2\}} \hspace{-0.5cm} {\cal W}(p,k,l) \, {\cal C}_B(p,k^1,k^2) \, {\cal C}_F(k^i) \quad .
- \end{eqnarray*}
+ \end{eqnarray}
\vspace{0.2cm}
\begin{minipage}[b]{350mm}
- We here show different observables as function of $\mu$. The dotted lines show the masses $U_1$ and $U_1$ determined from the plots above.
-
+ We here show different observables as function of $\mu=\mu_1=\mu_2$. The dotted lines show the masses $U_1$ and $U_2$ determined from the plots above. For the observables $\langle\phi^*\phi\rangle$ and $\langle n \rangle$ red symbols belong to flavor 1 and green symbols to flavor 2.
\begin{center}
\includegraphics[height=35.8cm]{finmu_840.pdf}
\end{center}